Source code for probnum.randprocs.markov.continuous._linear_sde

"""Linear SDE models as transitions."""

from typing import Callable, Optional

import numpy as np
import scipy.integrate
import scipy.linalg

from probnum import randvars
from probnum.randprocs.markov.continuous import _sde
from probnum.typing import FloatLike, IntLike
from probnum.utils.linalg import tril_to_positive_tril


class LinearSDE(_sde.SDE):
    """Linear stochastic differential equation (SDE),

    .. math:: d x(t) = [G(t) x(t) + v(t)] d t + L(t) x(t) d w(t).

    For Gaussian initial conditions, this solution is a Gaussian process.

    Parameters
    ----------
    drift_matrix_function :
        This is G = G(t). The evaluations of this function are called
        the drift matrix of the SDE.
        Returns np.ndarray with shape=(n, n)
    force_vector_function :
        This is v = v(t). Evaluations of this function are called
        the force(vector) of the SDE.
        Returns np.ndarray with shape=(n,)
    dispersion_matrix_function :
        This is L = L(t). Evaluations of this function are called
        the dispersion(matrix) of the SDE.
        Returns np.ndarray with shape=(n, s)
    mde_atol
        Absolute tolerance passed to the solver of the moment differential equations
        (MDEs). Optional. Default is 1e-6.
    mde_rtol
        Relative tolerance passed to the solver of the moment differential equations
        (MDEs). Optional. Default is 1e-6.
    mde_solver
        Method that is chosen in `scipy.integrate.solve_ivp`. Any string that is
        compatible with ``solve_ivp(..., method=mde_solve,...)`` works here.
        Usual candidates are ``[RK45, LSODA, Radau, BDF, RK23, DOP853]``.
        Optional. Default is LSODA.
    forward_implementation
        Implementation style for forward transitions.
    """

    def __init__(
        self,
        state_dimension: IntLike,
        wiener_process_dimension: IntLike,
        drift_matrix_function: Callable[[FloatLike], np.ndarray],
        force_vector_function: Callable[[FloatLike], np.ndarray],
        dispersion_matrix_function: Callable[[FloatLike], np.ndarray],
        mde_atol: Optional[FloatLike] = 1e-6,
        mde_rtol: Optional[FloatLike] = 1e-6,
        mde_solver: Optional[str] = "RK45",
        forward_implementation: Optional[str] = "classic",
    ):

        # Transform functions to be SDE-compatible and initialize super().
        def drift_function(t, x):
            return drift_matrix_function(t) @ x + force_vector_function(t)

        def drift_jacobian(t, x):
            return drift_matrix_function(t)

        def dispersion_function(t, x):
            return dispersion_matrix_function(t)

        super().__init__(
            state_dimension=state_dimension,
            wiener_process_dimension=wiener_process_dimension,
            drift_function=drift_function,
            drift_jacobian=drift_jacobian,
            dispersion_function=dispersion_function,
        )

        # Choose implementation for forward transitions
        choose_mde_forward_implementation = {
            "classic": self._solve_mde_forward_classic,
            "sqrt": self._solve_mde_forward_sqrt,
        }
        self._mde_forward_implementation = choose_mde_forward_implementation[
            forward_implementation
        ]

        # Once different smoothing algorithms are available,
        # replicate the scheme from NonlinearGaussian here, in which
        # the initialisation decides between, e.g., classic and sqrt implementations.

        # Store remaining functions and attributes
        self._drift_matrix_function = drift_matrix_function
        self._force_vector_function = force_vector_function
        self._dispersion_matrix_function = dispersion_matrix_function
        self._mde_atol = mde_atol
        self._mde_rtol = mde_rtol
        self._mde_solver = mde_solver
        self._forward_implementation_string = forward_implementation

[docs] def drift_matrix_function(self, t): return self._drift_matrix_function(t)
[docs] def force_vector_function(self, t): return self._force_vector_function(t)
[docs] def dispersion_matrix_function(self, t): return self._dispersion_matrix_function(t)
@property def mde_atol(self): return self._mde_atol @property def mde_rtol(self): return self._mde_rtol @property def mde_solver(self): return self._mde_solver @property def forward_implementation(self): return self._forward_implementation_string
[docs] def forward_rv( self, rv, t, dt=None, _compute_gain=False, _diffusion=1.0, **kwargs, ): if dt is None: raise ValueError( "Continuous-time transitions require a time-increment ``dt``." ) return self._mde_forward_implementation(rv, t, dt, _diffusion=_diffusion)
[docs] def backward_rv( self, rv_obtained, rv, rv_forwarded=None, gain=None, t=None, dt=None, _diffusion=1.0, **kwargs, ): if dt is None: raise ValueError( "Continuous-time transitions require a time-increment ``dt``." ) # Ignore rv_forwarded return self._solve_mde_backward( rv_obtained=rv_obtained, rv=rv, t=t, dt=dt, _diffusion=_diffusion, )
# Forward and backward implementation(s) def _solve_mde_forward_classic(self, rv, t, dt, _diffusion=1.0): """Solve forward moment differential equations (MDEs).""" dim = rv.mean.shape[0] mde, y0 = self._setup_vectorized_mde_forward_classic( rv, _diffusion=_diffusion, ) sol, new_mean, new_cov = self._solve_mde_forward(mde, y0, t, dt, dim) # Useful for backward transitions # Aka continuous time smoothing. sol_mean = lambda t: sol.sol(t)[:dim] sol_cov = lambda t: sol.sol(t)[dim:].reshape((dim, dim)) return randvars.Normal(mean=new_mean, cov=new_cov), { "sol": sol, "sol_mean": sol_mean, "sol_cov": sol_cov, } def _solve_mde_forward_sqrt(self, rv, t, dt, _diffusion=1.0): """Solve forward moment differential equations (MDEs) using a square-root implementation.""" dim = rv.mean.shape[0] mde, y0 = self._setup_vectorized_mde_forward_sqrt( rv, _diffusion=_diffusion, ) sol, new_mean, new_cov_cholesky = self._solve_mde_forward(mde, y0, t, dt, dim) new_cov = new_cov_cholesky @ new_cov_cholesky.T # Useful for backward transitions # Aka continuous time smoothing. sol_mean = lambda t: sol.sol(t)[:dim] sol_cov_cholesky = lambda t: sol.sol(t)[dim:].reshape((dim, dim)) sol_cov = ( lambda t: sol.sol(t)[dim:].reshape((dim, dim)) @ sol.sol(t)[dim:].reshape((dim, dim)).T ) return randvars.Normal( mean=new_mean, cov=new_cov, cov_cholesky=new_cov_cholesky ), { "sol": sol, "sol_mean": sol_mean, "sol_cov_cholesky": sol_cov_cholesky, "sol_cov": sol_cov, } def _solve_mde_forward(self, mde, y0, t, dt, dim): """Solve forward moment differential equations (MDEs).""" # Dense output for lambda-expression sol = scipy.integrate.solve_ivp( mde, (t, t + dt), y0, method=self._mde_solver, atol=self._mde_atol, rtol=self._mde_rtol, dense_output=True, ) y_end = sol.y[:, -1] new_mean = y_end[:dim] # If forward_sqrt is used, new_cov_or_cov_cholesky is a Cholesky factor of # the covariance # If forward_classic is used, new_cov_or_cov_cholesky is the covariance new_cov_or_cov_cholesky = y_end[dim:].reshape((dim, dim)) return sol, new_mean, new_cov_or_cov_cholesky def _solve_mde_backward(self, rv_obtained, rv, t, dt, _diffusion=1.0): """Solve backward moment differential equations (MDEs).""" _, mde_forward_info = self._mde_forward_implementation( rv, t, dt, _diffusion=_diffusion ) mde_forward_sol_mean = mde_forward_info["sol_mean"] mde_forward_sol_cov = mde_forward_info["sol_cov"] mde, y0 = self._setup_vectorized_mde_backward( rv_obtained, _diffusion=_diffusion, ) # Use forward solution for mean and covariance in scipy's ivp # Dense output for lambda-expression sol = scipy.integrate.solve_ivp( mde, (t + dt, t), y0, method=self._mde_solver, atol=self._mde_atol, rtol=self._mde_rtol, args=(mde_forward_sol_mean, mde_forward_sol_cov), dense_output=True, ) dim = rv.mean.shape[0] y_end = sol.y[:, -1] new_mean = y_end[:dim] new_cov = y_end[dim:].reshape((dim, dim)) # Useful for backward transitions # Aka continuous time smoothing. sol_mean = lambda t: sol.sol(t)[:dim] sol_cov = lambda t: sol.sol(t)[dim:].reshape((dim, dim)) return randvars.Normal(mean=new_mean, cov=new_cov), { "sol": sol, "sol_mean": sol_mean, "sol_cov": sol_cov, } def _setup_vectorized_mde_forward_classic(self, initrv, _diffusion=1.0): """Set up forward moment differential equations (MDEs). Compute an ODE vector field that represents the MDEs and is compatible with scipy.solve_ivp. """ dim = len(initrv.mean) def f(t, y): # Undo vectorization mean, cov_flat = y[:dim], y[dim:] cov = cov_flat.reshape((dim, dim)) # Apply iteration G = self.drift_matrix_function(t) u = self.force_vector_function(t) L = self.dispersion_matrix_function(t) new_mean = G @ mean + u new_cov = G @ cov + cov @ G.T + _diffusion * L @ L.T # Vectorize outcome new_cov_flat = new_cov.flatten() y_new = np.hstack((new_mean, new_cov_flat)) return y_new initcov_flat = initrv.cov.flatten() y0 = np.hstack((initrv.mean, initcov_flat)) return f, y0 def _setup_vectorized_mde_forward_sqrt(self, initrv, _diffusion=1.0): r"""Set up forward moment differential equations (MDEs) using a square-root implementation. (https://ieeexplore.ieee.org/document/4045974) The covariance :math:`P(t)` obeys the Riccati equation .. math:: \dot P(t) = G(t)P(t) + P(t)G^\top(t) + L(t)L^\top(t). Let :math:`S(t)` be a square-root of :math:`P(t)`, :math:`P(t)` positive definite, then .. math:: P(t) = S(t)S^\top(t) and we get the Riccati-Equation .. math:: \dot P(t) = G(t)S(t)S^\top(t) + 1/2 \cdot L(t)L^\top(t)S^{-\top}S^\top + S(t)S^\top(t)G^\top(t) + 1/2 \cdot S(t)S^{-1}(t)L(t)L^\top(t). One solution can be found by the square-root :math:`\dot S(t)` .. math:: \dot S(t) = G(t)S(t) + (A + 1/2 \cdot L(t)L^\top(t))S^{-\top} where :math:`A` is an arbitrary symmetric matrix. :math:`A` can be chosen to make S lower-triangular which can be achieved by .. math:: M(t) = S^{-1}(t)\dot S(t) + \dot S(t)^\top S^{-\top} and .. math:: M(t) = \bar G(t) + \bar G^\top(t) + \bar L(t) \bar L^\top(t) and .. math:: \bar G(t) = S^{-1}(t)G(t)S(t), \bar L(t) = S^{-1}L(t) and .. math:: \dot S(t) = S(t)[M(t)]_{\mathrm{lt}} where :math:`\mathrm{lt}` denotes the lower-triangular operator defined by .. math:: [M(t)]{_{\mathrm{lt}}}_{ij} = \begin{cases} 0 & i < j\\ 1/2 m(t)_{ij} & i=j\\ m(t)_{ij} & i > j \end{cases}. Compute an ODE vector field that represents the MDEs and is compatible with scipy.solve_ivp. """ dim = len(initrv.mean) def f(t, y): # Undo vectorization mean, cov_cholesky_flat = y[:dim], y[dim:] cov_cholesky = cov_cholesky_flat.reshape((dim, dim)) # Apply iteration G = self.drift_matrix_function(t) u = self.force_vector_function(t) L = self.dispersion_matrix_function(t) new_mean = G @ mean + u G_bar = scipy.linalg.solve_triangular( cov_cholesky, G @ cov_cholesky, lower=True ) L_bar = np.sqrt(_diffusion) * scipy.linalg.solve_triangular( cov_cholesky, L, lower=True ) M = G_bar + G_bar.T + L_bar @ L_bar.T new_cov_cholesky = tril_to_positive_tril( cov_cholesky @ (np.tril(M, -1) + 1 / 2 * np.diag(np.diag(M))) ) # Vectorize outcome new_cov_cholesky_flat = new_cov_cholesky.flatten() y_new = np.hstack((new_mean, new_cov_cholesky_flat)) return y_new initcov_cholesky_flat = initrv.cov_cholesky.flatten() y0 = np.hstack((initrv.mean, initcov_cholesky_flat)) return f, y0 def _setup_vectorized_mde_backward(self, finalrv_obtained, _diffusion=1.0): """Set up backward moment differential equations (MDEs). Compute an ODE vector field that represents the MDEs and is compatible with scipy.solve_ivp. """ dim = len(finalrv_obtained.mean) def f(t, y, mde_forward_sol_mean, mde_forward_sol_cov): # Undo vectorization mean, cov_flat = y[:dim], y[dim:] cov = cov_flat.reshape((dim, dim)) # Apply iteration G = self.drift_matrix_function(t) u = self.force_vector_function(t) L = self.dispersion_matrix_function(t) mde_forward_sol_cov_mat = mde_forward_sol_cov(t) mde_forward_sol_mean_vec = mde_forward_sol_mean(t) LL = _diffusion * L @ L.T LL_inv_cov = np.linalg.solve(mde_forward_sol_cov_mat, LL.T).T new_mean = G @ mean + LL_inv_cov @ (mean - mde_forward_sol_mean_vec) + u new_cov = (G + LL_inv_cov) @ cov + cov @ (G + LL_inv_cov).T - LL new_cov_flat = new_cov.flatten() y_new = np.hstack((new_mean, new_cov_flat)) return y_new finalcov_flat = finalrv_obtained.cov.flatten() y0 = np.hstack((finalrv_obtained.mean, finalcov_flat)) return f, y0