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Existing Methods  

Hyperband Algorithm
• Experimental Results
• Theory (Briefly)  



Grid search:
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Bayesian Optimization
attempt to optimize 

configuration selection

Hyperparameters
adaptively chosen
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Method is popular for hyperparameter tuning 
However…

Sequential (i.e. difficult to parallelize across nodes)
Requires its own hyperparameters

Not guaranteed to find a good setting

Goal: make random search faster

Random Search does not suffer any of these downsides
but it is often less efficient in number of evaluations



Assume:
• d hyperparameters to tune
• N total evaluations of configurations

Case 1:
• We can hope to cover the space
• Black-box optimization is a reasonable option

Case 2:
• Hard to cover the space, let alone be adaptive
• Increasingly common regime, e.g., deep learning

N = O(2d)

N = O(d)

Idea: Use adaptive resource allocation in Case 2 to 
drastically increase # evaluations using same budget!

Intuition: Adaptive Resource Allocation



Existing Methods 

Hyperband Algorithm 
• Experimental Results
• Theory (Briefly)  



Training set \Eval set

• Gradient descent
• Newton’s method
• Block coordinate descent
• Decision Trees
• ALS
• …

Assume we’re using an iterative learning algorithm

Nin = 784
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to lack of progress
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We should 
focus on 

“winners”!  
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What could go wrong?

Sequences can be non-monotonic, non-smooth, and 
have different rates of convergence



What could go wrong?

Sequences can be non-monotonic, non-smooth, and 
have different rates of convergence

Main challenges for an algorithm:

1) What scheme to use to allocate iterations?
2) What is the minimum iteration to throw out configs?

Does there exist an algorithm that provably works and 
also demonstrates good empirical performance?



Successive Halving (SH)

• Assume training algorithm executes for a 
maximum number of iterations (R)

• Our toy problem
• R = 28 
• Budget is B = 96
• Number of configurations is n = 8

1 2 3 4 5 6 7 8 

# IterationsR = 28 
B = 96
n = 8



1. Uniformly allocate resources among active 
configurations

2. Evaluate performance of each arm 

3. Throw out the worst half
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n-versus-B Tradeoff
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n = 4 n = 8

• For fixed B, we want biggest n possible w/o throwing 
away a good configuration too quickly

• Problem specific, and depends on underlying (and 
unknown) convergence properties 



1 2 3 4 1 2 3 4 5 6 7 8 

• For fixed B, we want biggest n possible w/o throwing 
away a good configuration too quickly

• Problem specific, and depends on underlying (and 
unknown) convergence properties 

n = 4 n = 8 Hyperband: try ‘all’ values of n for a given B!

• Max and min values of n determined by R (we require 
at least one configuration trained on R)

• Perform grid search on this range (in log space) 

n-versus-B Tradeoff



We fix budget B and try different
 values of n in the outer loop 

Successive “halving”, but 
generalized to arbitrary η



Sample Complexity Guarantees: Pure-exploration 
Non-stochastic Infinite-armed Bandit Problem



Existing Methods 

Hyperband Algorithm 
• Experimental Results 
• Theory (Briefly)  



Example: LeNet, SGD on MNIST

Solver code taken from http://
deeplearning.net/tutorial/lenet.html

R = 81;  B = 5*R;   η = 3

http://deeplearning.net/tutorial/lenet.html


How much does s matter?

The best value of s is unknowable a priori, so we try 
them all, and do not lose much

Example: LeNet, SGD on MNIST



Setup:
• R=75 epochs over the training set

• Experiments take >2 years in GPU-hours
• Architecture from cuda-convnet (used by 

Snoek et al. and Domhan et al.)  

Larger Neural Network Experiments



Architecture from Snoek et al. and 
Domhan et al. from cuda-convnet  



Architecture from Snoek et al. and 
Domhan et al. from cuda-convnet  
Hyperband exhibits:
• 10x speedup
• Improved final accuracy over purely Bayesian methods 
• Lower variance across trials

Hyperband takes 5*R to output anything
• At this point, others have considered 5 configurations, 

while Hyperband has considered over 256!



What if my learning algorithm is not iterative?
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bf

Recall our black-box solver from earlier…
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Hyperband with Data Downsampling

Time (minutes)

Te
st

 e
rr

or

Cifar-10

Multiclass classification via 
Kernel LS Regression

k(x, y) =

8
><

>:

exp(��||x� y||2)
(�hx, yi+ r)

d

tanh(�hx, yi+ r)

3 Hyperparameters: 

 - 
 
 - regularization constant
 - normalize? (binary)

 Hyperband exhibits:
• 60x speedup over random
• 30x speedup over Bayesian
• improved accuracy 



Existing Methods 

Hyperband Algorithm 
• Experimental Results
• Theory (Briefly)  

Extensions
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2 log(n)
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Successive Halving Uniform allocation

n max

i=2,...,n
��1

(

⌫i�⌫1
2 )

The best arm is identified if the budget is at least

More realistic setting: find a ‘good’ arm
• Assume arms sampled from some unknown distribution
• Can derive similar results comparing SH to Uniform
• Can generalize to Hyperband
• See paper for details…

Difference between sum and n*max can be large!
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Hyper-parameter optimization / model selection
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optimization. arXiv:1406.3896, 2014. 

Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for 
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Early stopping is not a new idea

Domhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic
     hyperparameter optimization of deep neural networks by extrapolation of                                  
     learning curves. In IJCAI, 2015. 

Previous works assume explicit convergence behavior  
Hyperband adapts to it (doesn’t rely on knowledge of      !)�k



Immediate Extensions of Hyperband

Hyperband applies to general resources:
• iterations
• dataset subsampling
• feature subsampling: useful when using random 

features to approximate kernels
• time: similar to iterations; useful in distributed setting 

to kill stragglers
 
Don’t want to set R?

• See paper for ‘infinite horizon’ version of Hyperband



Looks at more configurations to speed up random search
• Particularly useful when # evaluations linear in number 

of hyperparameters

Up to 70X faster than random search

General purpose: no assumptions on convergence rates 

Papers with theory and some extensions
• AISTATS16: http://arxiv.org/abs/1502.07943
• More recently on arXiv: http://arxiv.org/abs/1603.06560

Hyperband Summary


