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Terminology
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Parameters in Optimization Algorithms

Almost all optimization algorithms contain parameters.

I Adaptive parameter choices can be coded as heuristics, which are
themselves parametrized.

Often, convergence theory allows wide latitude in the choice of these
parameters, but large variations in practical performance are seen over
these parameter ranges.

Sometimes, theory is just a (conservative) guide, and non-theoretical
parameter choices are better.

We examine the role of parameters in a variety of continuous optimization
algorithms, mostly deterministic.

How sensitive is algorithm performance to parameters?

How are good parameter values chosen in practice?

What systematic efforts have been made to choose good parameters?

Are there lessons for parameter choices in stochastic algorithms?

Wright (UW-Madison) Parameter Selection Dec 2016 3 / 39



Outline

1. Measure the quality of parameters.

2. Parameters in several important algorithms

I Primal-dual interior-point for LP
I Accelerated gradient
I Stochastic Gradient
I Line-search methods for smooth unconstrained minimization.
I Forward-backward Methods (SpaRSA) for `1 regularization.
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“Good” and “Bad” Parameters
How do “good” and “bad” parameter choices differ?

Efficiency: time / iterations required to solve a problem.

Reliability: Does the algorithm crash, or does it solve the problem in a
reasonable time?

Can conflate these two criteria:

If the algorithm fails, could restart with different parameters.

Can design meta-algorithms in which the main algorithm is run with
different parameter settings (sequentially or concurrently), on where
parameters are chosen adaptively.

How important are efficiency / reliability?

Depends on the (expected) utility function that’s overlaid on the
efficiency / reliability measures.

Highly context-dependent. In some contexts, a factor-of-10 worse
runtime makes little difference. In others, even a factor of 2 is bad.
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Systematic Testing
Historically, comparison of optimization algorithms has been done using
batteries: collections of “representative” problems.

(Could use the same techniques to compare different parameter choices
within an algorithm.)

1980-2000: Usually tabulated test problems vs. iterations and runtimes on
each problem. Here’s part of a table from [Czyzyk et al., 1997]:
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Aggregating Performance Information

How to aggregate the performance on a battery of tests into more useful,
“lower-dimensional” comparisons?

Sum the runtimes. (Bad! Biased by performance on the long-running
problems.)

Rank solvers on each problem; aggregate the ranks e.g. average rank,
count number of wins. (Still common).

Performance profiles [Dolan and Moré, 2002]. Based on relative
performance of different methods on each problem. Graphical rather
than numerical. Very popular!
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Performance Profiles [Dolan and Moré, 2002]

Given S solvers on P problems, find the runtime

tp,s , p = 1, 2, . . . ,P, s = 1, 2, . . . ,S .

Normalize the runtime for each problem relative to the best solver for
that problem:

rp,s :=
tp,s

minj=1,2,...,S tp,j
.

For each solver s = 1, 2, . . . ,S , compute a cumulative distribution
function:

ρs(τ) :=
1

P
|{p = 1, 2, . . . ,P : rp,s ≤ τ}| .

Graph ρs(τ) vs τ (or log2 τ) for each s = 1, 2, . . . ,S .

Instead of “runtime” could use other performance measures e.g.
function evaluations, gradient evaluations.
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Example from [Moré, 2007]

11 direct solvers for solvers for sparse linear systems. (X-axis is log2 τ .)
(How to reduce this to a scalar metric?)
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Are There Alternatives to Battery Testing?

In some applications of stochastic gradient, a single data set may suffice.
(Could derive multiple instances from it.)

In other contexts, parametrized families of problems have been proposed.
(More parameters!) See [Lyness and Kaganove, 1977] for numerical
quadrature.

These can be carefully controlled, so give insights into the workings of
the algorithm....

but may be too narrow in scope to give a broad indication of
performance in the wild.
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Case Study: Interior-Point for Linear Programming
Breakthroughs in practical primal-dual interior-point methods for LP
happened in 1988-92. Continual refinement since then.

“Mehrotra predictor-corrector” (MPC) is a parametrized heuristic that,
when properly tuned, gives reliable and fast local convergence.

Primal: min
x

cT x s.t. Ax = b, x ≥ 0;

Dual: max
λ,s

bTλ s.t. ATλ+ s = c , s ≥ 0,

where A is m × n, x ∈ Rn, s ∈ Rn, λ ∈ Rm.

Primal-dual optimality conditions for (x , λ, s):

Ax = b, ATλ+ s = c , (x , s) ≥ 0, XSe = 0,

where

X = diag(x1, x2, . . . , xn), S = diag(s1, s2, . . . , sn), e = (1, 1, . . . , 1)T .
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Primal-Dual Interior-Point

At optimality, have xi si = 0 for all i = 1, 2, . . . , n. One of xi , si is zero and
the other is nonnegative. All iterates have (x , s) strictly positive. Use
average of xi si as measure of optimality: µ = xT s/n: Duality Gap.

Ingredients for MPC: “Affine-scaling” step, which is a Newton direction for
the equality optimality conditions:A 0 0

0 AT I
S 0 X

∆xaff

∆λaff

∆saff

 = −

 Ax − b
ATλ+ s − c
−XSe


Actual search direction (∆x ,∆λ,∆s) also has correction and centering:A 0 0

0 AT I
S 0 X

∆x
∆λ
∆s

 = −

 Ax − b
ATλ+ s − c

−XSe −∆Xaff∆Saffe + σµe,


for some σ ∈ (0, 1).
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Key Parameters
Steps along the primal direction ∆x and dual direction (∆λ,∆s) need to
maintain positivity of x and s components:

x + αpri∆x > 0, s + αdual∆s > 0.

Simplest approach is to choose αpri and αdual to be the maximum value
that satisfies these conditions scaled by a “backoff” factor γ slightly less
than 1, e.g. γ = .99 or γ = .999.

Choice of σ is critical! [Mehrotra, 1992] discovered a very effective
heuristic:

Find maximum values of αaff, pri and αaff, dual such that

x + αaff, pri∆xaff ≥ 0, s + αaff, dual∆saff ≥ 0.

Compute duality gap for this step:

µaff := (x + αaff, pri∆xaff)T (s + αaff, dual∆saff)/n;

Set σ = (µaff/µ)χ. (Exponent χ is a parameter. Default χ = 3.)

[Wright, 1997, Chapter 10] partly describes state of the art around 1997.
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Key Parameters

The PCx code [Czyzyk et al., 1997] has several other parameters, some
hard-wired into the code:

Multiple higher-order correction heuristic [Gondzio, 1996]

Loop unrolling in the core linear algebra computations

Parameters for sparse Cholesky factorization and iterative refinement.
(Linear equations become ill-conditioned near the solution.)

Parameters for handling dense columns in A.

Tolerances in presolve, convergence tolerances.

Reliability is sensitive to these parameters! Sometimes there is failure to
converge if e.g. the step scaling parameter γ is not close enough to 1.
“Converge before the conditioning of the linear system gets too bad.”

Efficiency is also sensitive to parameters, particularly those in the sparse
linear algebra. Usually within a modest multiple.

Development of some codes 1988-98 “overfit” to the Netlib LP test set.
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PDIP: Choosing These Parameters

Many parameters!

There are tricky interactions between them.

I Example: choice of strategy in the linear system solve is not
necessarily the same as what you would do when solving a
symmetric positive definite linear system arising from an elliptic
PDE. See e.g. [Wright, 1999].

AFAIK, no systematic study of best choices for these parameters.1

Experience of implementation experts over many years on client
problems has likely resulted in effective choices.

(Improvements in integer linear programming have been more
dramatic.)

1But I’ve been out of the PDIP loop for a long time!
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Accelerated Gradient

One variant of Nesterov’s accelerated gradient for strongly convex, smooth
f depends on parameters L and µ such that

µI � ∇2f (x) � LI , for all x .

Choose x0, set y0 = x0, and iterate as follows:

xk+1 = yk − 1

L
∇f (xk), yk+1 = xk+1 +

√
L/µ− 1√
L/µ+ 1

(xk+1 − xk).

Convergence:

f (xk)− f (x∗) ≤ L + µ

2
‖x0 − x∗‖2

(
1−

√
µ

L

)k

≤ L + µ

µ
(f (x0)− f (x∗))

(
1−

√
µ

L

)k

.
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Accelerated Gradient
Consider convex strongly quadratic

f (x) =
1

2
xTAx − bT x ,

so that µ and L are the minimum and maximum eigenvalues of A.

On such functions Conjugate Gradient has convergence

f (xk)− f (x∗) ≤ 4

(
1− 2√

L/µ+ 1

)2k

(f (x0)− f (x∗))

≈ 4

(
1− 4

√
µ

L

)k

(f (x0)− f (x∗)).

Doesn’t require estimates of µ and L. (Same complexity as Nesterov AG;
rate is faster by a constant factor.)

Question: How is performance of Nesterov AG affected by the quality of
estimates of L and µ?

Tested this on a problem with n = 10000, L = 1, µ = 10−3.
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Results

Declare convergence when f (xk)− f ∗ ≤ 10−8(f (x0)− f ∗).

Declare divergence when f (xk)− f ∗ ≥ 10(f (x0)− f ∗).

CG: 115 iterations. AG with correct (L, µ) 207 iterations.

AG is still valid when L is overestimated and/or µ is undersestimated.
Performance degrades gracefully in this regime.
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Results: Invalid L or µ
Consider invalid settings: Lfac > 1, µfac > 0 and

L = λmax(A)/Lfac, µ = λmin(A) ∗ µfac.

Example: Lfac = µfac = 1.36, get divergence for AG:
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Results

µfac iters

1 207
1.5 278
2 345
3 442
10 828

(a) AG iterations:
Lfac = 1

Lfac iters

1.1 197
1.3 180
1.34 203
1.35 many∗

1.36 230∗

1.4 47∗

1.5 15∗

(b) AG iterations:
µfac = 1. ∗ =diverged

Lfac = µfac iters

1.1 203
1 2 214
1.3 219
1.35 817
1.36 491∗

1.4 52∗

(c) AG iterations:
Lfac = µfac.
∗ =diverged

It’s encouraging that really bad settings “fail quickly.”
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Choosing Parameters Adaptively — or Avoiding Them!
Numerous approaches proposed recently for estimating µ, or designing
versions of accelerated gradient that achieve the a convergence rate like
the strongly convex case while not requiring µ at all.

[Nesterov, 2013] detects when µ is too small (by examining the
shrinkage of a gradient map), then doubles it and restarts.

[O’Donoghue and Candès, 2015] consider a different Nesterov
accelerated scheme (unified for weakly / strongly convex).

I They note “cycles” in the behavior and derive an effective
restarting heuristic based on this behavior.

I (Period of the cycles reveals µ/L, but not used explicitly.)

[Lin and Xiao, 2015] describe an adaptive scheme for estimating µ
(based on [Nesterov, 2013]), with restarting, at the cost of a log(L/µ)
factor in the complexity.

[Fercoq and Qu, 2016] describe a restarted acceleration scheme that
uses estimates of µ but does not rely on them being valid.
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Stochastic Gradient: Estimating µ

The estimate of µ is also critical in a strongly convex variant of stochastic
gradient [Nemirovski et al., 2009].

For f (x) := Eξg(x ; ξ), define

xk+1 = xk − αkg(xk , ξk), αk = 1/(µk).

Convergence is
E[‖xk − x∗‖2] = O(1/k).

But if µ is overestimated (so that steps are too short), convergence is
dramatically slower. [Nemirovski et al., 2009] example:

f (x) = x2/10, so that µ = .2,

but take steps αk = (1/k) rather than 5/k , with steps along −∇f (xk) (no
noise). Have xk > .8k−0.2.
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Line-Search Methods: Wolfe Conditions

Unconstrained minimization of smooth nonconvex function: minx f (x).

Line-search methods: At each iterate x , choose search direction p that
gives descent: pT∇f (x) < 0.

Set x ← x + αp, where steplength α > 0 satisfies Wolfe conditions:

f (x + αp) ≤ f (x) + c1α∇f (x)Tp, (not too long) (1)

|∇f (x + αp)Tp| ≤ −c2∇f (x)Tp, (not too short) (2)

where 0 < c1 < c2 < 1.

Use specialized one-dimensional searches (based on bracketing and
interpolation) to find α satisfying these conditions. Typically require just
2-4 function/gradient evaluations per search.

Folklore choices are c1 = 10−3, c2 = .7. Are these really the best?
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Line-Search Methods: Backtracking

Backtracking: Decrease α repeatedly by a constant factor until a sufficient
decrease condition is satisfied.

Given c1 ∈ (0, 1), αmax > 0, and ρ ∈ (0, 1), choose α to be the first value
in ᾱ, ρᾱ, ρ2ᾱ, . . . , that satisfies

f (x + αp) ≤ f (x) + c1α∇f (x)Tp,

where ᾱ is a first guess. (Set ᾱ = α−/ρ, where α− is the successful step
from the previous iteration.)

Folklore values: ρ = .5, c1 = 10−3.
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Performance Profiles
Moré (2007) studied choices of (c1, c2) using performance profiles. New
experiments (due to Clément Royer)

Search directions p chosen by steepest descent and nonlinear
conjugate gradient.

Battery of about 204 CUTEst test problems, dimensions n = 2-1000.

Searches over combinations of (c1, c2) for line-search, and (c1, ρ) for
backtracking:

c1 = 10−10, . . . , 10−1; c2 = .5, .75, .8, .9, .95; ρ = .3, .5, .7.

Keep track of CPU time, function evaluations, gradient evaluations.

For most of the 204 problems, the # gradient evaluations and CPU time
are insensitive to the parameters, for the bracketing/zoom approaches.

Most plots don’t include problems in the plots for which all solvers give
similar results!

We show mostly plots for # gradient evaluations.
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Steepest Descent: Bracketing/Zoom: All Problems
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All 204 problems: Most have similar performance! Each code fails to solve
about 10% of the problems.
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Steepest Descent: Bracketing/Zoom: Distinctive Cases
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35/204 distinctive cases: Stricter Wolfe values preferred (smaller c2, larger
c1).
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Steepest Descent: Bracketing/Zoom: c2 = 0.9
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20/204 distinctive cases: Stricter (larger) c1 values preferred.
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Steepest Descent: Bracketing/Zoom: c1 = 10−6
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28/204 distinctive cases: Stricter (smaller) c2 values preferred.
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Nonlinear CG: Bracketing/Zoom: All Distinctive Cases
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32/204 distinctive cases: Stricter c1 and c2 slightly preferred. See
divergence in reliability between different param settings.
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Nonlinear CG: Bracketing/Zoom: All Distinctive Cases
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32/204 distinctive cases: Stricter c1 and c2 slightly preferred. Divergence
in reliability between different parameter settings.
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Nonlinear CG: Bracketing/Zoom: c2 = .9
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Only 15/204 distinctive cases: Stricter c1 better on these few cases.
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Nonlinear CG: Bracketing/Zoom: c1 = 10−6
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Only 15/204 distinctive cases: Stricter c2 is better.
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Steepest Descent: Bracketing/Zoom vs Backtracking

0 2 4 6 8 10 12 14 16 18

Ratio of gradient evaluations (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
c
ti
o
n
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

c1=1e-10

c1=1e-8

c1=1e-6

c1=1e-3

c1=1e-1

backtrack rho=0.3

bracketzoom c2=0.5

bracketzoom c2=0.75

bracketzoom c2=0.8

bracketzoom c2=0.9

bracketzoom c2=0.95

180/204 distinct problems. Used ρ = 0.3 for backtracking — best but
clearly inferior. Note insensitivity of B/Z performance to parameters.
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Nonlinear CG: Bracketing/Zoom vs Backtracking
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171/204 distinct problems. Backtracking still inferior. Note again that
reliability of B/Z is somewhat sensitive to parameters.
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Line-Search Methods: Notes

Bracketing/Zoom is better than Backtracking (at least this
implementation).

Not sensitive to parameters on 80% of problems.

Best parameter settings are similar, for steepest descent and nonlinear
conjugate gradient.

Reliability (eventual termination) is more sensitive to parameters in
CG than steepest descent.

On the “distinctive” problems, preferred Wolfe parameters were
slightly more strict than the conventional wisdom allowed.
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Continuation in Regularized Optimization
Example: `1 regularization (LASSO, compressed sensing):

x(λ) := arg min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1. (3)

Many first-order methods proposed (SpaRSA, FISTA, etc) with long
antecedents.

The value of λ impacts the practical difficulty of solving (3).
Often there is statistical guidance for choosing λ (e.g. based on
distribution of errors in y). But usually interested in a range of λ
values.
Solution for large λ is trivial: λ ≥ ‖AT y‖∞ ⇒ x(λ) = 0.

Suggests a continuation heuristic (e.g. [Wright et al., 2009]): Given a
target value λ̄:

Start with large value λ = λ0 and solve for x(λ);
Decrease λ by some heuristic; re-solve for x(λ), using the previous
solution as a starting point.
Repeat until λ = λ̄.
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Continuation for `2-`1

Various heuristics tried:

Reduce λ by a constant factor;

Adapt the factor according to the number of iterations required to
solve for x(λ) at the previous λ. Even consider backtracking —
increasing λ again.

Continuation improves this class of methods greatly, and performance can
be very sensitive to the choice of continuation strategy / parameter. Poor
choices can lead to gross inefficiency, or failure.

AFAIK, no rigorous study performed.

Some complexity analysis of continuation strategies done e.g. by
[Xiao and Zhang, 2012].

Wright (UW-Madison) Parameter Selection Dec 2016 38 / 39



Conclusions

Good parameter choices are crucial in many optimization contexts.

In some cases there are > 10 important parameters.

Parameter selection in optimization is often guided by folklore /
accumulated wisdom.

Systematic procedures for selecting parameters and heuristics still not
used much — perhaps should be.

Choice of test problem batteries is crucial — danger of overfitting.

Thanks to Jorge Moré, Clément Royer.

FIN
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