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CRiSM workshop, Warwick, 20-22 April, 2016

Estimating Constants

• wide range of computational
methods for approximating
normalising constants

• wide range of communities

• novel challenges associated with
large data and highly complex
models

• 13 talks, plus two poster
sessions [England in April, where else...?!]



Larry’s constant

1 Larry’s constant

2 Charlie’s logistic regression

3 Xiao-Li’s MLE

4 Larry’s and Jamie’s paradox



Example 11.10

“Suppose that f is a probability density function and
that f(x) = cg(x), where g is a known function and
c > 0 is unknown. In principle, we can compute c since´
f(x)dx = 1 implies that c = 1/

´
g(x)dx. But in many

cases we can’t do the integral
´
g(x)dx since g might be

a complicated function and x could be high-dimensional.
Despite the fact that c is unknown, it is often possible to
draw X1, . . . , Xn from f; see Chapter 24. Can we use the
sample to estimate the normalizing constant c? Here is a
frequentist solution: Let f̂ be a consistent estimate of the
density f. Choose any point x and note that
c = f(x)/g(x). Hence ĉ = f̂(x)/g(x) is a consistent
estimate of c.”



Example 11.10: “the” argument

“Now let us try to solve the problem from a
Bayesian approach. Let π(c) be a prior such that
π(c) > 0 for all c > 0. The likelihood function is

Ln(c) =
∏n

i=1
f(Xi) =

∏n

i=1
cg(Xi) = c

n
∏n

i=1
g(Xi) ∝ cn .

Hence the posterior is proportional to cnπ(c). The
posterior does not depend on X1, . . . , Xn, so we come to
the startling conclusion that from the Bayesian point of
view, there is no information in the data about c.”

[”Example 11.10 is due to Ed George (personal communication)”]



“Bayesians are slaves to the likelihood function”

• likelihood function Ln(c)? which likelihood function?!
[moving c does not modify the sample]

• “there is no information in the data about c”: right!
Absolutely none whatsoever

• this is not a statistical problem, rather a numerical problem
with many Monte Carlo solutions

• Monte Carlo methods are frequentist (LLN) and asymptotical
(as in large numbers) [not an issue]

Is there any meaning in bringing a Bayesian flavour into the
Monte Carlo dishes?



a broader picture

• Larry’s problem somehow relates to the infamous harmonic
mean estimator issue [see later?]

• highlight paradoxical differences between statistics and Monte
Carlo methods:
• statistics constrained by sample and its distribution
• Monte Carlo free to generate samples
• no best unbiased estimator or optimal solution in Monte Carlo

integration

• paradox of the fascinating “Bernoulli factory” problem, which
requires infinite sequence of Bernoullis [see later]

[Flegal & Herbei, 2012; Jacob & Thiery, 2015]

• highly limited range of parameters allowing for unbiased
estimation versus universal debiasing of converging sequences

[McLeish, 2011; Rhee & Glynn, 2012, 2013]



Exercice 3.33

Accept–reject raw outcome: i.i.d. sequences
Y1, Y2, . . . , Yt ∼ g and U1, U2, . . . , Ut ∼ U(0, 1)

Random number of accepted Yi’s

P(N = n) =

(
n− 1

t− 1

)
(1/M)t (1− 1/M)n−t



Exercice 3.33

Accept–reject raw outcome: i.i.d. sequences
Y1, Y2, . . . , Yt ∼ g and U1, U2, . . . , Ut ∼ U(0, 1)

Joint density of (N,Y ,U)

P(N = n, Y1 ≤ y1, . . . , Yn ≤ yn, U1 ≤ u1, . . . , Un ≤ un)

=

ˆ yn

−∞ g(tn)(un ∧wn)dtn

ˆ y1

−∞ . . .

ˆ yn−1

−∞ g(t1) . . . g(tn−1)

×
∑

(i1,··· ,it−1)

t−1∏
j=1

(wij ∧ uij)

n−1∏
j=t

(uij −wij)
+dt1 · · ·dtn−1,

where wi = f(yi)/Mg(yi) and sum over all subsets of
{1, . . . , n− 1} of size t− 1



Exercice 3.33

Accept–reject raw outcome: i.i.d. sequences
Y1, Y2, . . . , Yt ∼ g and U1, U2, . . . , Ut ∼ U(0, 1)

Marginal joint density of (Yi, Ui)|N = n, i < n

P(N = n, Y1 ≤ y,U1 ≤ u1)

=

(
n − 1

t − 1

)(
1

M

)t−1(
1 −

1

M

)n−t−1

×
[
t − 1

n − 1
(w1 ∧ u1)

(
1 −

1

M

)
+
n − t

n − 1
(u1 −w1)

+

(
1

M

)] ˆ y

−∞ g(t1)dt1



much ado about noise

Accept-reject sample (X1, . . . , Xm) associated with (U1, . . . , UN)
and (Y1, . . . , YN)
N is stopping time for acceptance of m variables among Yj’s
Rewrite estimator of E[h] as

1

m

m∑
i=1

h(Xi) =
1

m

N∑
j=1

h(Yj) IUj≤wj
,

with wj = f(Yj)/Mg(Yj)

[Casella & Robert, 1996]



much ado about noise

Rao-Blackwellisation: smaller variance produced by integrating
out the Ui’s,

1

m

N∑
j=1

E[IUj≤wj
|N, Y1, . . . , YN] h(Yj) =

1

m

N∑
i=1

ρih(Yi),

where (i < n)

ρi = P(Ui ≤ wi|N = n, Y1, . . . , Yn)

= wi

∑
(i1,...,im−2)

∏m−2
j=1 wij

∏n−2
j=m−1(1 −wij)∑

(i1,...,im−1)

∏m−1
j=1 wij

∏n−1
j=m(1 −wij)

,

and ρn = 1.
Numerator sum over all subsets of {1, . . . , i− 1, i+ 1, . . . , n− 1} of
size m− 2, and denominator sum over all subsets of size m− 1

[Casella & Robert, 1996]



Accepted Metropolis–Hastings proposals

Yet another representation of Metropolis–Hastings estimator δ as

δ =
1

n

n∑
t=1

h(x(t)) =
1

n

Mn∑
i=1

nih(zi) ,

where

• (xt)t original MCMC chain

• zi’s are the accepted yj’s

• Mn is the number of accepted yj’s till time n

• ni is the number of times zi appears in the sequence (x(t))t

[Douc & Robert, 2011]



Accepted Metropolis–Hastings proposals

Yet another representation of Metropolis–Hastings estimator δ as

δ =
1

n

n∑
t=1

h(x(t)) =
1

n

Mn∑
i=1

nih(zi) ,

where

1 (zi, ni)i is a Markov chain;
2 zi+1 and ni are independent given zi;
3 ni is distributed as a geometric random variable with

probability parameter

p(zi) :=

ˆ
α(zi, y)q(y|zi)dy ;

4 (zi)i is a Markov chain with transition kernel
Q̃(z, dy) = q̃(y|z)dy and stationary distribution π̃ such that

q̃(·|z) ∝ α(z, ·)q(·|z) and π̃(·) ∝ π(·)p(·) .
[Douc & Robert, 2011]



The Bernoulli factory

Estimate of 1/p(zi),

ni = 1+

virtual infinite sum︷ ︸︸ ︷∞∑
j=1

∏
`≤j

I {u` ≥ α(zi, y`)} ,

improved by integrating u`’s

ξ̂i = 1+

∞∑
j=1

∏
`≤r

{1− α(zi, y`)}

• unbiased estimator of 1/p(zi)

• lower [conditional on ni] variance than geometric
{1− p(zi)}/p

2(zi)

• mileage may vary....

[Douc & Robert, 2011]



reverse logistic regression

1 Larry’s constant

2 Charlie’s logistic regression

3 Xiao-Li’s MLE

4 Larry’s and Jamie’s paradox



regression estimator

Given
Xij ∼ fi(x) = cihi(x)

with hi known and ci unknown (i = 1, . . . , k, j = 1, . . . , ni),
constants ci estimated by a “reverse logistic regression” based on
the quasi-likelihood

L(η) =
∑k

i=1

∑ni

j=1
log pi(xij, η)

with

pi(x, η) = exp{ηi}hi(x)
/∑k

i=1
exp{ηi}hi(x)

[Anderson, 1972; Geyer, 1992]
Approximation

log ĉi = logni/n− η̂i
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statistical framework?

Existence of a central limit theorem:

√
n (η̂n − η)

L−→ Nk(0, B
+AB)

[Geyer, 1992; Doss & Tan, 2015]

• strong convergence properties

• asymptotic approximation of the precision

• connection with bridge sampling and auxiliary model [mixture]

• ...but nothing statistical there [no estimation]

• which optimality? [weights unidentifiable]

[Kong et al., 2003; Chopin & Robert, 2011]
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evidence from a posterior sample

Use of the identity

E
[
ϕ(θ)

π(θ)L(θ)

]
=

ˆ
ϕ(θ)

π(θ)L(θ)

π(θ)L(θ)

Z
dθ

=
1

Z

no matter what the proposal ϕ(θ) is.
[Gelfand & Dey, 1994; Bartolucci et al., 2006]



harmonic mean estimator

Constraint opposed to usual importance sampling constraints:
ϕ(θ) must have lighter (rather than fatter) tails than π(θ)L(θ) for
the approximation

Ẑ1 = 1

/
1

T

T∑
t=1

ϕ(θ(t))

π(θ(t))L(θ(t))

to have a finite variance
[Robert & Wraith, 2012]



mixtures as proposals

Design specific mixture for simulation purposes, with density

ϕ̃(θ) ∝ ω1π(θ)L(θ) +ϕ(θ) ,

where ϕ(θ) is arbitrary (but normalised)
Note: ω1 is not a probability weight

[Chopin & Robert, 2011]
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evidence approximation by mixtures

Rao-Blackwellised estimate

ξ̂ =
1

T

T∑
t=1

ω1π(θ
(t))L(θ(t))

/
ω1π(θ

(t))L(θ(t)) +ϕ(θ(t)) ,

converges to ω1Z/{ω1Z + 1}
Deduce Ẑ from

ω1Ẑ/{ω1Ẑ + 1} = ξ̂

[Chopin & Robert, 2011]



partition function and maximum likelihood

For parametric family

f(x; θ) = p(x; θ)/Z(θ)

• normalising constant Z(θ) also called partition function

• ...if normalisation possible

• essential part of inference

• estimation by score matching [matching scores of model and
data]

• ...and by noise-contrastive estimation [generalised Charlie’s
regression]

[Gutmann & Hyvärinen, 2012, 2015]



partition function and maximum likelihood

For parametric family

f(x; θ) = p(x; θ)/Z(θ)

Generic representation with auxiliary data y from known
distribution fy and regression function

h(u; θ) =

{
1+

nx

ny
exp(−G(u; θ))

}−1

Objective function

J(θ) =
∑nx

i=1
logh(xi; θ) +

∑ny

i=1
log{1− h(yi; θ)}

that can be maximised with no normalising constant
[Gutmann & Hyvärinen, 2012, 2015]



Xiao-Li’s MLE

1 Larry’s constant

2 Charlie’s logistic regression

3 Xiao-Li’s MLE

4 Larry’s and Jamie’s paradox

[Meng, 2011, IRCEM]



Xiao-Li’s MLE

“The task of estimating an integral by Monte Carlo
methods is formulated as a statistical model using
simulated observations as data.
The difficulty in this exercise is that we ordinarily have
at our disposal all of the information required to
compute integrals exactly by calculus or numerical
integration, but we choose to ignore some of the
information for simplicity or computational
feasibility.”

[Kong, McCullagh, Meng, Nicolae & Tan, 2003]



Xiao-Li’s MLE

“Our proposal is to use a semiparametric statistical
model that makes explicit what information is ignored
and what information is retained. The parameter
space in this model is a set of measures on the sample
space, which is ordinarily an infinite dimensional
object. None-the-less, from simulated data the
base-line measure can be estimated by maximum
likelihood, and the required integrals computed by a
simple formula previously derived by Geyer and by
Meng and Wong using entirely different arguments.”

[Kong, McCullagh, Meng, Nicolae & Tan, 2003]



Xiao-Li’s MLE

“By contrast with Geyer’s retrospective likelihood, a
correct estimate of simulation error is available
directly from the Fisher information. The principal
advantage of the semiparametric model is that
variance reduction techniques are associated with
submodels in which the maximum likelihood estimator
in the submodel may have substantially smaller
variance than the traditional estimator.”

[Kong, McCullagh, Meng, Nicolae & Tan, 2003]

(c.) Rachel2002



Xiao-Li’s MLE

“At first glance, the problem appears to be an exercise in calculus
or numerical analysis, and not amenable to statistical formulation”

• use of Fisher information

• non-parametric MLE based on
simulations

• comparison of sampling
schemes through variances

• Rao–Blackwellised
improvements by invariance
constraints [Meng, 2011, IRCEM]
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NPMLE

Observing

Yij ∼ Fi(t) = c
−1
i

ˆ t

−∞ωi(x) dF(x)
with ωi known and F unknown
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ˆ t
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maximising in p ∏
ij

c−1i ωi(yij)p(yij)
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NPMLE

Observing

Yij ∼ Fi(t) = c
−1
i

ˆ t

−∞ωi(x) dF(x)
with ωi known and F unknown
Result such that ∑

ij

ĉ−1r ωr(yij)∑
s nsĉ

−1
s ωs(yij)

= 1

[Vardi, 1985]
Bridge sampling estimator

∑
ij

ĉ−1r ωr(yij)∑
s nsĉ

−1
s ωs(yij)

= 1

[Gelman & Meng, 1998; Tan, 2004]



end of the 2002 discussion

“...essentially every Monte Carlo activity may be interpreted as
parameter estimation by maximum likelihood in a statistical model.
We do not claim that this point of view is necessary; nor do we
seek to establish a working principle from it.”

• restriction to discrete support measures [may be] suboptimal
[Ritov & Bickel, 1990; Robins et al., 1997, 2000, 2003]

• group averaging versions in-between multiple mixture
estimators and quasi-Monte Carlo version

[Owen & Zhou, 2000; Cornuet et al., 2012; Owen, 2003]

• statistical analogy provides at best narrative thread



end of the 2002 discussion

“The hard part of the exercise is to construct a submodel such
that the gain in precision is sufficient to justify the additional
computational effort”

• garden of forking paths, with infinite possibilities

• no free lunch (variance, budget, time)

• Rao–Blackwellisation may be detrimental in Markov setups



end of the 2002 discussion

“The statistician can considerably improve the efficiency of the
estimator by using the known values of different functionals such
as moments and probabilities of different sets. The algorithm
becomes increasingly efficient as the number of functionals
becomes larger. The result, however, is an extremely complicated
algorithm, which is not necessarily faster.” Y. Ritov

“...the analyst must violate the likelihood principle and eschew
semiparametric, nonparametric or fully parametric maximum
likelihood estimation in favour of non-likelihood-based locally
efficient semiparametric estimators.” J. Robins



...and beginning of the 2015 discussion

Questions about probabilistic numerics:

• answer to the zero variance estimator

• significance of a probability statement about a mathematical
constant other than epistemic

• posterior in functional spaces mostly reflect choice of prior
rather than information...

• ...and idem for loss function

• big world versus small worlds debate
[Robbins & Wasserman, 2000]

• questionable coherence of Bayesian inference in functional
spaces

• unavoidable recourse to (and impact of) Bayesian prior
modelling



Robins–Wasserman–Ritov paradox

1 Larry’s constant

2 Charlie’s logistic regression

3 Xiao-Li’s MLE

4 Larry’s and Jamie’s paradox



small worlds...

Observations xi ∈ [0, 1]d, ri ∈ {0, 1}, and censored yi ∈ {0, 1} with
joint complete model

p(x)π(x)r(1− π(x))1−rθ(x)y{1− θ(x)}1−y

with p(·) , π(·) known
Quantity of interest

ψ = P(Y = 1) =

ˆ
[0,1]d

θ(x)p(x)dx

Horwitz-Thompson estimator

ψ̂n =
1

n

n∑
i=1

yiri
π(xi)

unbiased and consistent
[Robins & Wasserman, 2012]

Improved versions
[Rotnitzky et al, 2012]
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...big world

“Any estimator [of θ(·)] that is not a function of π(·) cannot be
uniformly consistent.”

[Robins & Ritov, 1997]
Introducing a prior on θ(·) does not provide satisfactory answer:
“...the likelihood has no information (...) If the prior on θ(·) is
independent from π(·), then the posterior will not concentrate.”

[Robins & Wasserman, 2012]

• biased sampling of the Yi’s with known weight π(xi)

• above Monte Carlo based solutions available by estimating the
reference measure à la Vardi

• not “Bayesian enough”?

• open challenge for today’s audience?!



...big world

“Any estimator [of θ(·)] that is not a function of π(·) cannot be
uniformly consistent.”

[Robins & Ritov, 1997]
Introducing a prior on θ(·) does not provide satisfactory answer:
“...the likelihood has no information (...) If the prior on θ(·) is
independent from π(·), then the posterior will not concentrate.”

[Robins & Wasserman, 2012]

• biased sampling of the Yi’s with known weight π(xi)

• above Monte Carlo based solutions available by estimating the
reference measure à la Vardi
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closure

• pardon my French!

• Ich bin ein Berliner (1993): perfectly coherent to be Bayesian
outside statistical frameworks

• the more the merrier
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