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1 Introduction

Randomized algorithms are central to modern machine learning. In the presence of massive datasets,
researchers often turn to stochastic optimization to solve learning problems. Of particular interest
is stochastic gradient descent (SGD), a first-order method that approximates the learning objective
and gradient by a random point estimate. A classical question in learning theory is, if a randomized
learner has access to a finite training sample, will the resulting learned model generalize to the data’s
generating distribution?

This question has been addressed by two notable studies: Elisseeff et al. [5] analyzed bagging meth-
ods, and Hardt et al. [6] analyzed SGD. Both analyses crucially rely on the algorithmic stability of
the learning algorithm, which measures sensitivity to perturbations in the training data. A (random-
ized) learning algorithm that is stable enjoys good generalization properties. Our work addresses
two gaps in the previous studies: Hardt et al.’s results for SGD hold in expectation over draws of
the training data and example sequence, whereas one typically prefers results that hold with high
probability; Elisseeff et al. derived high-probability generalization bounds, but did not prove the
necessary stability conditions for SGD; moreover, their bounds only apply to static distributions on
the algorithm, such as a fixed, uniform distribution. We would ideally like high-probability bounds
for SGD that support non-uniform, data-dependent sampling.

In this excerpt from a longer, ongoing project, we prove several key results. First, we show that
SGD on a smooth, strongly convex objective is uniformly stable, in a stronger sense than proven
by Hardt et al. We then prove two high-probability generalization bounds for randomized learning
algorithms: one that holds for fixed, data-independent product measures (such as a uniform distribu-
tion); and another, combining PAC-Bayesian theory with stability analysis, that holds for arbitrary,
data-dependent distributions. When the distribution is a product measure, the latter bound holds
with high probability over draws of both the data and training randomization. When combined with
our stability result, one obtains new, high-probability generalization bounds for SGD. Moreover, the
possibilities for data-dependent training randomization are intriguing; our analysis could provide
a better theoretical understanding of weighted sampling strategies, such as importance sampling
[12, 16, 14, 1] and curriculum learning [2], or lead to new algorithms that balance faster empirical
risk minimization with generalization.

2 Preliminaries

Let X ⊆ Rd denote a closed, compact input space, and let Y denote a set of labels. For convenience,
let Z , X × Y denote their Cartesian product. We assume some unknown distribution, D, on
Z . Given a sequence of training examples, S , (z1, . . . , zn) = ((x1, y1), . . . , (xn, yn)), drawn
independently and identically from D, we wish to learn a predictor, h : X → Y , from some class
of models, H. We assume access to a deterministic learning algorithm, A : Zn × Θ → H, which,
given access to S, and an instantiation of some hyperparameters, θ ∈ Θ, produces a hypothesis,
h ∈ H.
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A randomized learning algorithm can be viewed as a deterministic learning algorithm whose hyper-
parameters are randomized. For instance, SGD is a learning algorithm that takes as input a training
set, S, and a sequence of random indices, sampled with replacement from the set {1, . . . , n}. The
important thing to note is that, given the sequence of indices, SGD is deterministic. Thus, if P is a
distribution on Θ = {1, . . . , n}T—i.e., the set of all index sequences of length T—then SGD can be
viewed as drawing θ ∈ Θ according to P, then running a deterministic learning algorithm, A(S, θ).

For a bounded loss function, L : H× Z → [0,M ], let L (A(S, θ), z) denote the loss of a predictor
that was output by A(S, θ) when applied to an example z. Ultimately, we are interested in min-
imizing the expected loss over draws of a random example, z ∼ D. For a given instantiation of
hyperparameters, θ ∈ Θ, we denote this quantity by R(S, θ) , Ez∼D [L (A(S, θ), z)]. (The learn-
ing algorithm should always be clear from context.) The expectation can be approximated by the
sample average over the training set; i.e., the empirical risk, R̂(S, θ) , 1

n

∑n
i=1 L (A(S, θ), zi). By

upper-bounding the difference of the two, G(S, θ) , R(S, θ) − R̂(S, θ), which we refer to as the
generalization error, we obtain an upper bound on R(S, θ).

Since learning is randomized, we also want to bound the expected risk over draws of random
hyperparameters. We therefore overload the above notation for a distribution, P, on Θ; let
R(S,P) , Eθ∼P [R(S, θ)], R̂(S,P) , Eθ∼P[R̂(S, θ)], and G(S,P) , R(S,P) − R̂(S,P). Note
that, by linearity of expectation, the outer expectation over θ ∼ P can be pushed inside the inner
expectation over z ∼ D in the risk, or the summation over i in the empirical risk.

Relationship to PAC-Bayes Conditioned on the training set, a distribution on the hyperparameter
space, Θ, induces a distribution on the hypothesis space,H. One could ignore the learning algorithm
altogether and just consider a distribution on H directly, as is done in PAC-Bayesian analysis. In
the PAC-Bayes learning framework, we fix a prior distribution, P, on H, then learn a posterior
distribution, Q, conditioned on the training data. The complexity of learning is captured by the
KL divergence between Q and P. PAC-Bayes analyzes the Gibbs loss, Eh∼Q [L (h, z)], which is
the expected loss of a random hypothesis, h ∈ H, drawn from Q. This quantity is similar to the
expected loss of a randomized algorithm, Eθ∼Q [L (A(S, θ), z)]. The subtle distinction between the
two losses is that the latter is explicitly a function of the training data, S, whereas the former quantity
may only implicitly depend on S—for instance, if the distribution onH is induced by a randomized
learning algorithm. The advantage of making the learning algorithm explicit is that it isolates the
source of randomness, which may help in analyzing the distribution of learned hypotheses. Indeed,
it may be difficult to map the output of a randomized learning algorithm to a distribution on the
hypothesis space. The disadvantage of making the learning algorithm explicit is that, due to the loss’
dependence on the training data, the generalization error could be sensitive to certain examples. This
condition is studied in stability analysis, which we discuss in the next section.

3 Stability

Informally, stability measures the amount of change in the output of a function when the input is
perturbed; a function is stable if the change is proportional to the perturbation. A learning algorithm
is stable if the loss on its output changes proportionally to perturbations of its inputs. In other
words, a learning algorithm should not be overly sensitive to any single input. Stability is crucial
for generalization [11], and has also been linked to differentially private learning [13, 15]. In this
section, we discuss several notions of stability tailored for randomized learning algorithms. From
this point on, let DH(v,v′) ,

∑|v|
i=1 1{vi = v′i} denote the Hamming distance.

The learning-theoretic literature traditionally measures stability with respect to perturbations of the
training data. The following definition, attributed to Elisseeff et al. [5], is a modified version of
Bousquet and Elisseeff’s [2002] uniform stability, designed to accommodate randomized algorithms.

Definition 1 (Data Stability). A randomized learning algorithm, A, is βZ -uniformly stable with
respect to a loss function, L, and a distribution, P, on Θ if, for any two datasets, S, S′ ∈ Zn :
DH(S, S′) = 1, which differ at exactly one example,

sup
z∈Z

∣∣∣∣ Eθ∼P [L (A(S, θ), z)− L (A(S′, θ), z)]

∣∣∣∣ ≤ βZ . (1)
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Note that Equation 1 holds in expectation over draws of θ ∼ P, which is a weaker requirement than
uniformity over Θ. For meaningful generalization rates, we will want βZ to be of order O(1/n).

We also consider stability with respect to changes in the hyperparameters. We will assume that the
hyperparameter space, Θ, decomposes into the product of T subspaces,

∏T
t=1 Θt. For example, Θ

could be the set of all sequences of example indices, such as one would sample in SGD.

Definition 2 (Hyperparameter Stability). A randomized learning algorithm, A, is βΘ-uniformly
stable with respect to a loss function, L if, for any dataset, S ∈ Zn, and any two hyperparameter
instantiations, θ, θ′ ∈ Θ : DH(θ, θ′) = 1, that differ at a single coordinate,

sup
z∈Z
|L (A(S, θ), z)− L (A(S, θ′), z)| ≤ βΘ. (2)

WhenA is both βZ -uniformly and βΘ-uniformly stable, we say thatA is (βZ , βΘ)-uniformly stable.
In addition to requiring βZ = O(1/n), we will also need βΘ to be of order O(1/

√
nT ). If T ≥ n

(as it often is), then βΘ = O(1/T ) suffices. We review one such case in the next section.

3.1 When Stability is Satisfied

Given the above definitions of uniform stability, the natural question is: when are they satisfied? We
will focus on weight vectors,H ⊆ {w ∈ Rd : d ≥ 1}, learned with SGD. SGD involves a sequence
of parameter updates of the form Ut(w, z) , w − ηt∇L(w, z), where ηt is a step size for iterate t.
(When not needed, we drop the iterate subscript.) In the tth round of SGD, the learned weights, wt,
are defined recursively as wt = Ut(wt−1, zt).

Hardt et al. [6] analyzed the βZ -uniform stability of SGD with uniform sampling (with replacement)
for various types of loss functions. We defer to their work for βZ -uniform stability and instead
focus on the stronger condition, (βZ , βΘ)-uniform stability. Proving βΘ = O(1/

√
nT ) (or βΘ =

O(1/T )) is a challenge that Hardt et al. did not address. Elisseeff et al. [5] proved (βZ , βΘ)-uniform
stability for certain bagging algorithms, but did not consider SGD. As a first step, we consider loss
functions that are Lipschitz, smooth and strongly convex (see Appendix A.1 for definitions). Clearly,
we are also interested in non-(strongly)-convex losses, but proving O(1/T )-uniform stability for
these losses is difficult; we hope to address this in future work. In the following theorem, we prove
(βZ , βΘ)-uniform stability for SGD with uniform sampling and “staircase” decaying step sizes.

Theorem 1. Assume the loss function, L, is γ-strongly convex, λ-Lipschitz and σ-smooth. Suppose
SGD with uniform sampling is run for T iterations with step sizes ηt , 1/(γt + σ). Then, SGD is
(βZ , βΘ)-uniformly stable with βZ ≤ 2λ2

γn and βΘ ≤ 2λ2

γT .

The proof is given in Appendix A.1. Since βΘ = O(1/T ), then for T ≥ n, the stability is dominated
by O(1/

√
nT ), which is sufficient for good generalization.

4 Risk Bounds

In this section, we present several new theoretical results concerning the generalization behavior of
randomized learning algorithms. While previous work [5] has addressed this topic, to our knowl-
edge, ours is the first analysis of stochastic gradient methods that yields PAC bounds; that is, risk
bounds that hold with high probability over draws of a finite training dataset.

Our work is closely related to that of Hardt et al. [6] and Lin et al. [8], who used stability analysis to
derive bounds for generalization in expectation; i.e., upper bounds on ES∼Dn [G(S,P)]. While such
results are useful for gaining insight into generalization behavior, PAC bounds are usually favored.
Hardt et al. posited that PAC bounds would require a more sophisticated analysis, and perhaps a
stronger condition than βZ -uniform stability (Definition 1). In actuality, βZ -uniform stability is
sufficient for PAC learning in expectation over draws of hyperparameters, θ ∼ P (as shown in
Appendix A.3). However, to prove a risk bound that holds with high probability over draws of both
S ∼ Dn and θ ∼ P indeed requires a stronger condition, (βZ , βΘ)-uniform stability (Definition 2).

We begin with such a risk bound for any fixed product measure on Θ. We then present a novel
analysis of randomized learning from the PAC-Bayesian perspective. The result is a generalization
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bound that holds, with high probability over S ∼ Dn, for all posteriors, Q, on Θ, provided the
learning algorithm is (βZ , βΘ)-uniformly stable with respect to a fixed prior, P. This latter result
could have interesting implications for data-dependent sampling strategies for SGD.

4.1 Generalization via Stability

Our first goal is to prove a risk bound for randomized algorithms, such as SGD, that holds with high
probability over draws of both S ∼ Dn and θ ∼ P. This is a stronger proposition than generalization
in expectation, and as such requires stronger assumptions: namely, that P is a product measure,
and A has (βZ , βΘ)-uniform stability. These conditions let us upper-bound the moment-generating
function of G(S, θ) − E [G(S, θ)] (proven in Appendix A.4), which enables the following theorem
(which is a refinement of [5, Theorem 15]). Our proof is given in Appendix A.5.
Theorem 2. Suppose A is a (βZ , βΘ)-uniformly stable learning algorithm with respect to a loss
function, L, and a fixed product measure, P, on Θ. Then, for any n ≥ 1 and δ ∈ (0, 1), with
probability at least 1− δ over draws of a dataset, S ∼ Dn, and hyperparameters, θ ∼ P,

R(S, θ) ≤ R̂(S, θ) + βZ +

√
((M + 2nβZ)2 + 4nTβ2

Θ) ln 1
δ

2n
. (3)

When T ≥ n, combining Theorem 2 with Theorem 1 yields a generalization bound that is asymp-
totically dominated by O(1/

√
n). (We leave this simple variable substitution to the reader.) Further,

since Theorem 1 guarantees βΘ = O(1/T ), increasing T , the number of iterations of SGD, actu-
ally reduces the bound. This suggests that training for longer periods does not lead to overfitting,
provided the loss function, sampling distribution and step sizes satisfy the conditions of Theorem 1.

4.2 A PAC-Bayesian View

In the previous subsection, we assumed that hyperparameters were sampled according to a fixed
distribution on Θ; for instance, SGD with uniformly random sampling from S. While this distribu-
tion may be sufficient (or even optimal) for certain situations, it may sometimes be advantageous
to sample according to a data-dependent distribution. Unfortunately, the previous analysis does not
accommodate data-dependent hyperparameter distributions, and would therefore not accommodate,
e.g., SGD with data-dependent sampling. This shortcoming motivates the following PAC-Bayesian
view of randomized learning. PAC-Bayes risk bounds must hold (with high probability) for all pos-
teriors simultaneously, including those that depend on the data. In our extension for randomized
learning algorithms, we fix a prior on Θ—which could be uniform—then determine a posterior on
Θ given the training set. Our PAC-Bayes bound holds for all posteriors, including those that depend
on S, but penalizes those that diverge significantly the prior.
Theorem 3. Suppose A is a (βZ , βΘ)-uniformly stable learning algorithm with respect to a loss
function, L, and a fixed product measure, P, on Θ. Then, for any n ≥ 1 and δ ∈ (0, 1), with
probability ≥ 1− δ over draws of a dataset, S ∼ Dn, every posterior distribution, Q, on Θ satisfies

R(S,Q) ≤ R̂(S,Q) + βZ +

√
2 ((M + 2nβZ)2 + 4nTβ2

Θ)
(
DKL(Q‖P) + ln 2

δ

)
n

. (4)

The proof is given in Appendix A.6. Note that the stability requirements only need to be satisfied
by the fixed prior, such as a uniform distribution. This simple prior can have (O(1/n),O(1/T ))-
uniform stability, as indicated by Theorem 1. The penalty for letting the posterior stray from the
prior is captured by the KL divergence term. When the KL term is sub-logarithmic in n, we achieve
a Õ(1/

√
n) generalization rate. When the posterior is a product measure, we can adapt Equation 4

to hold with high probability over both S ∼ Dn and θ ∼ P, as shown in Appendix A.7.

5 Discussion
We have presented several new theoretical results regarding the stability and generalization error
of learning with SGD. Most interestingly, our PAC-Bayes bound provides a means of analyzing
non-uniform, data-dependent sampling strategies, which could have repercussions for importance
sampling or curriculum learning; or, possibly a new SGD variant that explicitly minimizes both the
empirical risk and KL divergence terms. We plan to investigate these ideas in forthcoming work.

4



References
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A Supplemental Material

The following appendices are provided to supplement the paper.

A.1 Proof of Theorem 1

The following definitions, borrowed from Hardt et al., are used to characterize loss functions and
update rules.

Definition 3 (Lipschitzness). A loss function, L, is λ-Lipschitz if

sup
w,w′∈H

sup
z∈Z

|L(w, z)− L(w′, z)|
‖w −w′‖2

≤ λ. (5)

Definition 4 (Smoothness). A loss function, L, is σ-smooth if

sup
w,w′∈H

sup
z∈Z

‖∇L(w, z)−∇L(w′, z)‖2
‖w −w′‖2

≤ σ. (6)

Definition 5 (Expansivity). An update, U , is α-expansive if

sup
w,w′∈H

sup
z∈Z

‖U(w, z)− U(w′, z)‖2
‖w −w′‖2

≤ α. (7)

We say that U is contractive if α ≤ 1.

Definitions 3 to 5 are essentially variants of Lipschitz continuity: the loss is σ-smooth if its gradient
is σ-Lipschitz; likewise, an update is α-expansive if it is α-Lipschitz.

We now prove a fundamental technical lemma that is central to our proof of Theorem 1.

Lemma 1. Assume that the loss function, L, is λ-Lipschitz. Further, assume that each SGD update,
Ut, is αt-expansive. If SGD is run for T iterations on two sequences of examples that differ at a
single step, k, then the resulting learned hypotheses, wT and w′T satisfy

‖wT −w′T ‖2 ≤ 2ληk

T∏
t=k+1

αt. (8)

Proof. For the first k − 1 iterations of SGD, the example sequences are the same; therefore, so are
the learned weights. On processing the kth example, the weights may diverge, but we will show that
the divergence is bounded, due to the Lipschitz property. For every iteration after k, the weights may
continue to follow different trajectories, but the expansivity property lets us bound the difference of
the final, learned weights.

Starting at T and recursing backward, we have that

‖wT −w′T ‖2 ≤
∥∥wT−1 −w′T−1

∥∥
2
αT ≤ . . . ≤ ‖wk −w′k‖2

T∏
t=k+1

αt. (9)

Then, expanding the kth update,

‖wk −w′k‖2 =
∥∥wk−1 − ηk∇L(wk−1, zk)−w′k−1 + ηk∇L(wk−1, z

′
k)
∥∥

2

≤ ‖ηk∇L(wk−1, zk)‖2 + ‖ηk∇L(wk−1, z
′
k)‖2

≤ 2ηkλ. (10)

Combining Equations 9 and 10 completes the proof.

We can now prove Theorem 1. First, note that ηt ≤ 1/σ for all t = 1, . . . , T . As noted by Hardt et al.
[6, proof of Theorem 3.9], due to the strong convexity of the loss function, this step size guarantees
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that each update is contractive with coefficient 1− ηtγ = 1− 1
t+σ/γ . Moreover,

E
θ∼P

[‖wT −w′T ‖2] ≤
T∑
k=1

(
T∏

t=k+1

(1− ηtγ)

)
ηk ·

2λ

n

=

T∑
k=1

(
T∏

t=k+1

(
1− 1

t+ σ/γ

))
1

k + σ/γ
· 2λ

γn

=

T∑
k=1

k + σ/γ

T
· 1

k + σ/γ
· 2λ

γn
=

2λ

γn
. (11)

Combining Equation 11 with the Lipschitz property (Equation 5),

E
θ∼P

[L(wT , z)− L(w′T , z)] ≤ λ E
θ∼P

[‖wT −w′T ‖2] , (12)

we obtain an upper bound on the data stability coefficient, βZ ≤ 2λ2

γn .

Now, suppose the example sequence is perturbed at any index k. Via Lemma 1, we have that

‖wT −w′T ‖2 ≤ 2ληk

T∏
t=k+1

(1− ηtγ)

=
2λ

γ
· 1

k + σ/γ

T∏
t=k+1

(
1− 1

t+ σ/γ

)
=

2λ

γ
· 1

k + σ/γ
· k + σ/γ

T
=

2λ

γT
, (13)

which we combine with Equation 5 to obtain βΘ ≤ 2λ2

γT .

A.2 Technical Lemmas: Stability of the Generalization Error

To prove our generalization bounds, we will require the following technical lemmas, which connect
stability with respect to the loss function to stability with respect to the generalization error.

Lemma 2. If A is βZ -uniformly stable with respect to L and P, then, for any S, S′ ∈ Zn :
DH(S, S′) = 1,

|G(S,P)−G(S′,P)| ≤ 2βZ +
M

n
. (14)

Proof. Observe that the difference of generalization errors decomposes as

|G(S,P)−G(S′,P)| =
∣∣∣R(S,P)− R̂(S,P)−R(S′,P) + R̂(S′,P)

∣∣∣
≤ |R(S,P)−R(S′,P)|+

∣∣∣R̂(S′,P)− R̂(S,P)
∣∣∣ , (15)

following from the triangle inequality. We will upper-bound the righthand terms separately. First,
using linearity of expectation and the βZ -uniform stability of A, we have that

|R(S,P)−R(S′,P)| =
∣∣∣∣ Ez∼D E

θ∼P
[L (A(S, θ), z)− L (A(S′, θ), z)]

∣∣∣∣
≤ E
z∼D

∣∣∣∣ Eθ∼P [L (A(S, θ), z)− L (A(S′, θ), z)]

∣∣∣∣
≤ E
z∼D

βZ = βZ . (16)
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Then, without loss of generality, assume that S differs from S′ at the ith example, denoted z′i. Using
the triangle inequality and βZ -uniform stability,∣∣∣R̂(S,P)− R̂(S′,P)

∣∣∣ ≤ 1

n

∑
j 6=i

∣∣∣∣ Eθ∼P [L(A(S, θ), zj)− L(A(S′, θ), zj)]

∣∣∣∣
+

∣∣∣∣ 1n E
θ∼P

[L(A(S, θ), zi)− L(A(S′, θ), z′i)]

∣∣∣∣
≤ 1

n

∑
j 6=i

βZ +
M

n
= βZ +

M

n
. (17)

Substituting Equations 16 and 17 into Equation 15 completes the proof.

Lemma 3. If A is βΘ-uniformly stable with respect to L, then, for any S ∈ Zn and θ, θ′ ∈ Θ :
DH(θ, θ′) = 1,

|G(S, θ)−G(S, θ′)| ≤ 2βΘ. (18)

Proof. The proof is almost identical to that of Lemma 2. First, we decompose the generalization
error:

|G(S, θ)−G(S, θ′)| ≤ |R(S, θ)−R(S, θ′)|+
∣∣∣R̂(S, θ)− R̂(S, θ′)

∣∣∣ . (19)

Then, we upper-bound the difference of risk terms:

|R(S, θ)−R(S, θ′)| ≤ E
z∼D

[|L (A(S, θ), z)− L (A(S, θ′), z)|] ≤ βΘ. (20)

Then, we upper-bound the difference of empirical risk terms:∣∣∣R̂(S, θ)− R̂(S, θ′)
∣∣∣ ≤ 1

n

n∑
i=1

|L(A(S, θ), zi)− L(A(S, θ′), zi)| ≤ βΘ. (21)

Combining Equations 19 to 21 completes the proof.

A.3 A Risk Bound for βZ -Uniform Stability

As a warm-up to Theorem 2, we will show that βZ -uniform stability (Definition 1) is indeed a
sufficient condition for PAC-learning with randomized algorithms, such as SGD. The following
theorem holds with high probability over draws of a training dataset, S ∼ Dn, and in expectation
over draws of hyperparameters, θ ∼ P, according to a fixed distribution, P.
Theorem 4. SupposeA is a βZ -uniformly stable learning algorithm with respect to a loss function,
L, and a fixed distribution, P, on Θ. Then, for any n ≥ 1 and δ ∈ (0, 1), with probability at least
1− δ over draws of a dataset, S ∼ Dn,

R(S,P) ≤ R̂(S,P) + βZ + (M + 2nβZ)

√
ln 1

δ

2n
. (22)

By combining Theorem 4 with a O(1/n)-uniform stability bound (such as those by Hardt et al.
[6], or Theorem 1), we obtain an upper bound on the generalization error that decays at a rate of
O(1/

√
n).

Proof. Our proof uses a simple adaptation of the canonical technique pioneered by Bousquet and
Elisseeff [3]. First, we review a cornerstone of stability-based generalization analysis, commonly
known as McDiarmid’s inequality [10]. The following is a specialized version of the general the-
orem. Suppose ϕ : Zn → R is a function for which there exists a constant, β > 0, such that

∀S, S′ ∈ Zn : DH(S, S′) = 1, |ϕ(S)− ϕ(S′)| ≤ β. (23)

Then, for any ε > 0,

Pr
S∼Zn

{ϕ(S)− Eϕ(S) ≥ ε} ≤ exp

(
−2ε2

nβ2

)
. (24)
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An important special case is when β = O(1/n), in which case the righthand side of Equation 24
becomes O

(
exp(−2nε2)

)
, which decays rapidly.

By Lemma 2, G( · ,P) satisfies Equation 23 with β = 2βZ +M/n. We therefore have that

Pr
S∼Dn

G(S,P)− E [G(S,P)] ≥ (M + 2nβZ)

√
ln 1

δ

2n


≤ exp


−2

(
(M + 2nβZ)

√
ln 1
δ

2n

)2

n (2βZ +M/n)
2

 = δ.

Thus, with probability at least 1− δ over draws of S ∼ Dn,

G(S,P) ≤ E
S∼Dn

[G(S,P)] + (M + 2nβZ)

√
ln 1

δ

2n
. (25)

Let us pause at this point to recognize that the generalization error, G(S,P), is not a zero-mean
random variable. This is because the learning algorithm—hence, the loss composed with the training
algorithm—is a function of the entire training set and does not decompose over individual examples.
(In contrast, the generalization error of a given hypothesis has mean zero.) Therefore, to finish the
proof, we must upper-bound the expected generalization error, ES∼Dn [G(S,P)]. To do so, we use
linearity of expectation, and the fact that each example is i.i.d.:

E
S∼Dn

[G(S,P)] =
1

n

n∑
i=1

E
S∼Dn

E
z′i∼D

E
θ∼P

[L (A(S, θ), z′i)− L (A(S, θ), zi)]

≤ 1

n

n∑
i=1

E
S∼Dn

E
z′i∼D

E
θ∼P

[L (A(S′, θ), z′i)− L (A(S, θ), zi)] + βZ

= βZ . (26)

In the first inequality, we formed a new dataset, S′, by replacing zi with z′i; the difference of losses,
Eθ∼P [L (A(S, θ), z′i)− L (A(S′, θ), z′i)], is upper-bounded by βZ , via Definition 1. The last line
follows from symmetry; since S and S′ are both distributed according to Dn, and θ is independent of
S and S′, the expected losses cancel out. Combining Equations 25 and 26 completes the proof.

A.4 An Upper-bound on the Moment-generating Function

The proofs of Theorems 2 and 3 require an upper-bound on the moment-generating function of the
random variable G(S, θ)− E [G(S, θ)].

Lemma 4. Fix a product measure, P(θ) =
∏T
t=1 Pt(θt), and suppose A is a (βZ , βΘ)-uniformly

stable with respect to L and P. Let β̄Z , 2βZ +M/n, and recall, from Lemmas 2 and 3, that A is
therefore (β̄Z , 2βΘ)-uniformly stable with respect to G and P. Then, with

Φ(S, θ) , G(S, θ)− E [G(S, θ)] , (27)

for any ε > 0,

E
S∼Dn
θ∼P

[exp (εΦ(S, θ))] ≤ exp

(
ε2

8

(
nβ̄2
Z + 4Tβ2

Θ

))
. (28)

Proof. To reduce notation, we omit the subscript notation from expectations. Further, let zi:j ,
zi, . . . , zj and θi:j , θi, . . . , θj . (Interpret z1:0 and θ1:0 as the empty set.) We start by constructing
a Doob martingale as follows:

Vi ,


E[G(S, θ) | z1]− E[G(S, θ)] for i = 1

E[G(S, θ) | z1:i]− E[G(S, θ) | z1:i−1] for i ∈ {2, . . . , n}
E[G(S, θ) |S, θ1:i]− E[G(S, θ) |S, θ1:i−1] for i ∈ {n+ 1, . . . , n+ T}

9



Observe that E[Vi] = 0 and
∑n+T
i=1 Vi = Φ(S, θ). Thus, using the law of total expectation (alterna-

tively, iterated expectations),

E [exp (εΦ(S, θ))] = E

[
exp

(
ε

n+T∑
i=1

Vi

)]
= E

[
n+T∏
i=1

eεVi

]

= E

[
n+T−1∏
i=1

eεVi E
[
eεVn+T |S, θ1:T−1

]]

≤ E

[
n+T−1∏
i=1

eεVi sup
S,θ1:T−1

E
[
eεVn+T |S, θ1:T−1

]]
.

By iteratively applying this upper bound, we obtain

E [exp (εΦ(S, θ))] ≤

(
n∏
i=1

sup
z1:i−1

E
[
eεVi | z1:i−1

])

×

 T∏
j=1

sup
S,θ1:j−1

E
[
eεVn+j |S, θ1:j−1

] .

If each Vi is bounded over all z1:i−1, and each Vj is bounded over all S and θ1:j−1, then Hoeffding’s
lemma [7] can be used to upper-bound their respective moment-generating functions. Hoeffding’s
lemma states that, if X is a zero-mean random variable, such that a ≤ X ≤ b almost surely, then,
for all ε ∈ R,

E
[
eεX
]
≤ exp

(
ε2(b− a)2

8

)
.

We therefore need to show that:

∀i ∈ 1, . . . , n, ∃ci : supVi − inf Vi

= sup
z1:i,z′i

E[G(S, θ) | z1:i]− E[G(S′, θ) | z1:i−1, z
′
i] ≤ ci; (29)

∀j ∈ 1, . . . , T, ∃cj : supVn+j − inf Vn+j

= sup
S,θ1:j ,θ′j

E[G(S, θ) |S, θ1:j ]− E[G(S, θ′) |S, θ1:j−1, θ
′
j ] ≤ cj , (30)

To prove Equation 29, we use the fact that A is β̄Z -uniformly stable with respect to G, as well as
the mutual independence between examples and hyperparameters:

sup
z1:i,z′i

E[G(S, θ) | z1:i]− E[G(S′, θ) | z1:i−1, z
′
i]

= sup
z1:i,z′i

∑
zi+1:n

E
θ∼P

[G(S, θ)−G(S′, θ)] D(zi+1:n)

≤
∑
zi+1:n

β̄Z D(zi+1:n) = β̄Z .

(For notational simplicity, the expectation over zi+1:n is denoted by a summation.) Similarly, to
prove Equation 30, we use βΘ-uniform stability and independence between hyperparameters:

sup
S,θ1:j ,θ′j

E[G(S, θ) |S, θ1:j ]− E[G(S, θ′) |S, θ1:j−1, θ
′
j ]

= sup
S,θ1:j ,θ′j

∑
θj+1:T

(G(S, θ)−G(S, θ′))P(θj+1:T )

≤
∑
θj+1:T

2βΘ P(θj+1:T ) = 2βΘ.

10



Thus,

E [exp (εΦ(S, θ))] ≤

(
n∏
i=1

exp

(
ε2β̄2
Z

8

)) T∏
j=1

exp

(
ε2(2βΘ)2

8

)
= exp

(
ε2

8

(
nβ̄2
Z + 4Tβ2

Θ

))
,

which establishes Equation 28.

A.5 Proof of Theorem 2

The proof proceeds similarly to that of Theorem 4, but we first need to show that G(S, θ) con-
centrates around its mean. Define Φ(S, θ) as in Equation 27 and observe that, for any t > 0 and
ε > 0,

Pr
S∼Dn
θ∼P

{Φ(S, θ) ≥ t} = Pr
S∼Dn
θ∼P

{
eεΦ(S,θ) ≥ eεt

}
≤ e−εt E

S∼Dn
θ∼P

[
eεΦ(S,θ)

]
.

The last inequality uses Markov’s inequality. Using Lemma 4 to upper-bound the moment-
generating function, and taking

β , n (2βZ +M/n)
2

+ 4Tβ2
Θ, and ε ,

4t

β
,

we then have that

Pr
S∼Dn
θ∼P

{Φ(S, θ) ≥ t} ≤ exp

(
−4t2

β

)
exp

((
4t

β

)2
β

8

)
= exp

(
−2t2

β

)

= exp

(
− 2t2

n (2βZ +M/n)
2

+ 4Tβ2
Θ

)
.

Therefore, recalling the definition of Φ(S, θ), and solving for t, we have that

Pr
S∼Dn
θ∼P

{
G(S, θ)− E [G(S, θ)] ≥

√
(M + 2nβZ)2 + 4nTβ2

Θ

2n
ln

1

δ

}

≤ exp


−2

(√
(M+2nβZ)2+4nTβ2

Θ

2n ln 1
δ

)2

n (2βZ +M/n)
2

+ 4Tβ2
Θ

 = δ.

Thus, with probability at least 1− δ over draws of both S ∼ Dn and θ ∼ P,

G(S, θ) ≤ E [G(S, θ)] +

√
((M + 2nβZ)2 + 4nTβ2

Θ) ln 1
δ

2n
.

Since E [G(S, θ)] = E [G(S,P)], we apply Equation 26 to finish the proof.

A.6 Proof of Theorem 3

PAC-Bayesian analysis typically requires a key step known as change of measure, attributed to
Donsker and Varadhan [4]. If X is a random variable taking values in Ω, then for any two distribu-
tions, P and Q, on Ω,

E
X∼Q

[X] ≤ DKL(Q‖P) + ln E
X∼P

[
eX
]
. (31)

Let ε > 0 denote a free parameter, which we will define later. Via Equation 31, we have that

G(S,Q) =
1

ε
E
θ∼Q

[εG(S, θ)]

≤ 1

ε

(
DKL(Q‖P) + ln E

θ∼P
[exp (εG(S, θ))]

)
. (32)
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By Markov’s inequality, with probability at least 1− δ over draws of S ∼ Dn,

E
θ∼P

[exp (εG(S, θ))] ≤ 1

δ
E

S∼Dn
E
θ∼P

[exp (εG(S, θ))]

=
1

δ
E

S∼Dn
E
θ∼P

[exp (εE [G(S, θ)] + εΦ(S, θ))]

=
1

δ
exp

(
ε E
S∼Dn
θ∼P

[G(S, θ)]

)
E

S∼Dn
θ∼P

[exp (εΦ(S, θ))] .

The second line uses the definition of Φ(S, θ) from Equation 27, where the inner expectation is over
S ∼ Dn and θ ∼ P. The last line uses the fact that the inner expectation is constant with respect
to the outer expectation. We can now bound the righthand terms separately. Using Equation 26, we
have that

exp

(
ε E
S∼Dn
θ∼P

[G(S, θ)]

)
= exp

(
ε E
S∼Dn

[G(S,P)]
)
≤ exp (ε βZ) .

We use Lemma 4 to upper-bound E [exp (εΦ(S, θ))]. Putting the pieces together, and letting β̄Z =
2βZ +M/n, we thus have that with probability at least 1− δ,

E
θ∼P

[exp (εG(S, θ))] ≤ 1

δ
exp

(
ε βZ +

ε2

8

(
nβ̄2
Z + 4Tβ2

Θ

))
,

which implies (via Equation 32)

G(S,Q) ≤ βZ +
1

ε

(
DKL(Q‖P) + ln

1

δ

)
+
ε

8

(
nβ̄2
Z + 4Tβ2

Θ

)
. (33)

What remains is to optimize ε to minimize the bound. Minimizing an expression of the form a/ε+bε

is fairly straightforward; the optimal value is ε? =
√
a/b. However, if we were to apply this formula

to Equation 33, the optimal ε would depend on Q via the KL divergence term. Since we want the
bound to hold simultaneously for all Q, we need to define ε such that it does not depend on Q. To
do so, we construct a sequence of discrete values:

∀i = 0, 1, 2, . . . , εi , 2i

√
8 ln 2

δ

nβ̄2
Z + 4Tβ2

Θ

. (34)

For each εi, we assign δi , δ2−(i+1) probability to the probability that Equation 33 does not hold,
substituting (εi, δi) for (ε, δ). Thus, with probability at least 1−

∑∞
i=0 δi = 1− δ

∑∞
i=0 2−(i+1) =

1− δ, all i = 0, 1, 2, . . . satisfy

G(S,Q) ≤ βZ +
1

εi

(
DKL(Q‖P) + ln

1

δi

)
+
εi
8

(
nβ̄2
Z + 4Tβ2

Θ

)
. (35)

For any Q, we select the optimal index, i?, as

i? =

⌊
1

2 ln 2
ln

(
DKL(Q‖P)

ln(2/δ)
+ 1

)⌋
. (36)

Since
1

2

√
DKL(Q‖P)

ln(2/δ)
+ 1 ≤ 2i

?

≤

√
DKL(Q‖P)

ln(2/δ)
+ 1,

with a bit arithmetic, we have that√
2(DKL(Q‖P) + ln 2

δ )

nβ̄2
Z + 4Tβ2

Θ

≤ εi? ≤

√
8(DKL(Q‖P) + ln 2

δ )

nβ̄2
Z + 4Tβ2

Θ

. (37)

It can also be shown [9] that

DKL(Q‖P) + ln
1

δi?
≤ 3

2

(
DKL(Q‖P) + ln

2

δ

)
. (38)
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Thus, with probability at least 1− δ, every posterior, Q, satisfies

G(S,Q) ≤ βZ +
1

εi?

(
DKL(Q‖P) + ln

1

δi?

)
+
εi?

8

(
nβ̄2
Z + 4Tβ2

Θ

)
≤ βZ +

√
nβ̄2
Z + 4Tβ2

Θ

2(DKL(Q‖P) + ln 2
δ )
· 3

2

(
DKL(Q‖P) + ln

2

δ

)

+

√
8(DKL(Q‖P) + ln 2

δ )

nβ̄2
Z + 4Tβ2

Θ

· nβ̄
2
Z + 4Tβ2

Θ

8

= βZ +

√
2
(
n2β̄2

Z + 4nTβ2
Θ

) (
DKL(Q‖P) + ln 2

δ

)
n

. (39)

Substituting the definition of G(S,Q) and β̄Z , we obtain Equation 4.

A.7 A Derandomized PAC-Bayes Bound for Product Posteriors

Equation 4 holds with high probability over draws of the training data, but the risk is in expectation
over draws of hyperparameters. To obtain a bound similar to Theorem 3, that holds with high
probability over draws of both the training data, S ∼ Dn, and the hyperparameters, θ ∼ Q, we
consider posteriors that are product measures.

Theorem 5. Suppose A is a (βZ , βΘ)-uniformly stable learning algorithm with respect to a loss
function, L, and a fixed product measure, P, on Θ. Then, for any n ≥ 1 and δ ∈ (0, 1), with
probability at least 1− δ over draws of both a dataset, S ∼ Dn, and hyperparameters, θ ∼ Q, from
any posterior product measure, Q, on Θ,

R(S, θ) ≤ R̂(S, θ)+βZ + βΘ

√
2T ln

2

δ
+

√
2 ((M + 2nβZ)2 + 4nTβ2

Θ)
(
DKL(Q‖P) + ln 4

δ

)
n

.

(40)

Note that, if βΘ = O(1/T ), the term βΘ

√
2T ln 1

δ2
vanishes at a rate of O(1/

√
T ). And if T ≥ n,

this term is dominated by O(1/
√
n).

Proof. To accommodate all posteriors that might arise from a draw of S ∼ Dn, it helps to consider Q
as a function of S. Accordingly, we let Q(S) denote the distribution induced by S. With δ1 , δ/2,
let

E1(S) ,

∃Q : G(S,Q) ≥ +βZ +

√√√√2 ((M + 2nβZ)2 + 4nTβ2
Θ)
(
DKL(Q‖P) + ln 2

δ1

)
n


denote the event that there exists a posterior for which Equation 4 does not hold. With δ2 , δ/2, let

E2(S, θ) ,

{
G(S, θ) ≥ G(S,Q(S)) + βΘ

√
2T ln

1

δ2

}
denote the event that the generalization error of a given θ exceeds the expected generalization error
under the posterior Q(S) by more than βΘ

√
2T ln 1

δ2
.

The probability that we wish to upper-bound is

Pr
S∼Dn
θ∼Q(S)

{E1(S) ∨ E2(S, θ)} ≤ Pr
S∼Dn

{E1(S)} + Pr
S∼Dn
θ∼Q(S)

{E2(S, θ)}

≤ Pr
S∼Dn

{E1(S)} + sup
S∈Zn

Pr
θ∼Q(S)

{E2(S, θ) |S} .
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By Theorem 3, PrS∼Dn {E1(S)} ≤ δ1. To upper-bound Prθ∼Q(S) {E2(S, θ) |S}, it suffices to
show that G(S, θ) concentrates tightly around G(S,Q(S)).

Recall that A is 2βΘ-uniformly stable with respect to L, independent of the posterior. Remember
also that Lemma 2 impliesG satisfies McDiarmid’s stability condition (Equation 23) with β , 2βΘ.
Since Q(S) is a product measure, we can therefore apply McDiarmid’s inequality (Equation 24)

with ε , βΘ

√
2T ln 1

δ2
:

Pr
θ∼Q(S)

{E2(S, θ) |S} ≤ exp

−2
(
βΘ

√
2T ln 1

δ2

)2

T (2βΘ)
2

 = δ2.

Thus,
Pr

S∼Dn
θ∼Q(S)

{E1(S) ∨ E2(S, θ)} ≤ δ1 + δ2 = δ;

so, with probability at least 1− δ,

G(S, θ) ≤ βΘ

√
2T ln

1

δ2
+G(S,Q(S))

≤ βΘ

√
2T ln

1

δ2
+ βZ +

√√√√2 ((M + 2nβZ)2 + 4nTβ2
Θ)
(
DKL(Q‖P) + ln 2

δ1

)
n

.

When we add R̂(S, θ) to both sides of the inequality, and replace δ1 and δ2 with δ/2, we obtain
Equation 40.
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