
A Novel Bandit-Based Approach to
Hyperparameter Optimization

Collaborators: Lisha Li (UCLA), Kevin Jamieson (UC Berkeley),
Giulia DeSalvo (NYU), Afshin Rostamizadeh (Google)

Ameet Talwalkar (UCLA)
December 10, 2016

Training set \Eval set

Training set \Eval setNin = 784

N
out

= 10
Nhid

hyperparameters

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [10

1, 103]

hyperparameters

Nin = 784

N
out

= 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [10

1, 103]

Nhid
Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

bf

hyperparameters

Nin = 784

N
out

= 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [10

1, 103]

Nhid
Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

bf

hyperparameters

Nin = 784

N
out

= 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [10

1, 103]

Nhid
Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

Nin = 784

N
out

= 10
Nhid

Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

How do we efficiently
choose good

hyperparameters?

Existing Methods  

Hyperband Algorithm
• Experimental Results
• Theory (Briefly)  

Grid search:
Hyperparameters
on 2d uniform grid

Random search:
Hyperparameters
randomly chosen

Bayesian Optimization:
Hyperparameters
adaptively chosen

1

2

3

4

5

6

7
8

9

10

11
12

13

14
15

16

How do we choose hyperparameters?

Bayesian Optimization
attempt to optimize

configuration selection

Hyperparameters
adaptively chosen

1

2

3

4

5

6

7
8

9

10

11
12

13

14
15

16

Method is popular for hyperparameter tuning
However…

Sequential (i.e. difficult to parallelize across nodes)
Requires its own hyperparameters

Not guaranteed to find a good setting

Goal: make random search faster

Random Search does not suffer any of these downsides
but it is often less efficient in number of evaluations

Assume:
• d hyperparameters to tune
• N total evaluations of configurations

Case 1:
• We can hope to cover the space
• Black-box optimization is a reasonable option

Case 2:
• Hard to cover the space, let alone be adaptive
• Increasingly common regime, e.g., deep learning

N = O(2d)

N = O(d)

Idea: Use adaptive resource allocation in Case 2 to
drastically increase # evaluations using same budget!

Intuition: Adaptive Resource Allocation

Existing Methods 

Hyperband Algorithm
• Experimental Results
• Theory (Briefly)  

Training set \Eval set

• Gradient descent
• Newton’s method
• Block coordinate descent
• Decision Trees
• ALS
• …

Assume we’re using an iterative learning algorithm

Nin = 784

Nin = 784

N
out

= 10
Nhid

Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

epochs

ev
al

-lo
ss

How was
computation time

spent?

Nin = 784

N
out

= 10
Nhid

Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

epochs

ev
al

-lo
ss

Black-box solver
stopped short due
to lack of progress

Nin = 784

N
out

= 10
Nhid

Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

epochs

ev
al

-lo
ss

Iterations are
 wasted on
“losers”!

Nin = 784

N
out

= 10
Nhid

Training set \

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

epochs

ev
al

-lo
ss

xxxx

x
x

We should
focus on

“winners”!

Number of epochs

Validation
loss

An early-stopping heuristic…

Number of epochs

Validation
loss

An early-stopping heuristic…

Number of epochs

Validation
loss

An early-stopping heuristic…

Number of epochs

Validation
loss

An early-stopping heuristic…

What could go wrong?

Sequences can be non-monotonic, non-smooth, and
have different rates of convergence

What could go wrong?

Sequences can be non-monotonic, non-smooth, and
have different rates of convergence

Main challenges for an algorithm:

1) What scheme to use to allocate iterations?
2) What is the minimum iteration to throw out configs?

Does there exist an algorithm that provably works and
also demonstrates good empirical performance?

Successive Halving (SH)

• Assume training algorithm executes for a
maximum number of iterations (R)

• Our toy problem
• R = 28
• Budget is B = 96
• Number of configurations is n = 8

1 2 3 4 5 6 7 8

IterationsR = 28
B = 96
n = 8

1. Uniformly allocate resources among active
configurations

2. Evaluate performance of each arm

3. Throw out the worst half

1 2 3 4 5 6 7 8

IterationsR = 28
B = 96
n = 8

round 1 budget is 32 (r1 = 4)

Successive Halving (SH)

1 2 3 4 5 6 7 8

IterationsR = 28
B = 96
n = 8

round 1 budget is 32 (r1 = 4)

1. Uniformly allocate resources among active
configurations

2. Evaluate performance of each arm

Successive Halving (SH)

1. Uniformly allocate resources among active
configurations

2. Evaluate performance of each arm

3. Throw out the worst half

Iterations

1 2 3 4 5 6 7 8
X X X X

R = 28
B = 96
n = 8

round 1 budget is 32 (r1 = 4)

Successive Halving (SH)

1. Uniformly allocate resources among active
configurations

2. Evaluate performance of each arm

3. Throw out the worst half

Repeat until
total budget
exhausted

1 2 3 4 5 6 7 8
X X X X

Iterations

round 2 budget is 32 (r2 = 8)

R = 28
B = 96
n = 8

Successive Halving (SH)

1. Uniformly allocate resources among active
configurations

2. Evaluate performance of each arm

3. Throw out the worst half

1 2 3 4 5 6 7 8
X X X XX X

Iterations

round 2 budget is 32 (r2 = 8)

Repeat until
total budget
exhausted

R = 28
B = 96
n = 8

Successive Halving (SH)

1. Uniformly allocate resources among active
configurations

2. Evaluate performance of each arm

3. Throw out the worst half

1 2 3 4 5 6 7 8
X X X XX X

Iterations

Repeat until
total budget
exhausted

round 3 budget is 32 (r2 = 16)

R = 28
B = 96
n = 8

Successive Halving (SH)

1. Uniformly allocate resources among active
configurations

2. Evaluate performance of each arm

3. Throw out the worst half

1 2 3 4 5 6 7 8
X X X XX XX

Iterations

round 3 budget is 32 (r2 = 16)

Repeat until
total budget
exhausted

R = 28
B = 96
n = 8

Successive Halving (SH)

1 2 3 4

n-versus-B Tradeoff

1 2 3 4 5 6 7 8

n = 4 n = 8

• For fixed B, we want biggest n possible w/o throwing
away a good configuration too quickly

• Problem specific, and depends on underlying (and
unknown) convergence properties

1 2 3 4 1 2 3 4 5 6 7 8

• For fixed B, we want biggest n possible w/o throwing
away a good configuration too quickly

• Problem specific, and depends on underlying (and
unknown) convergence properties

n = 4 n = 8 Hyperband: try ‘all’ values of n for a given B!

• Max and min values of n determined by R (we require
at least one configuration trained on R)

• Perform grid search on this range (in log space)

n-versus-B Tradeoff

We fix budget B and try different
 values of n in the outer loop

Successive “halving”, but
generalized to arbitrary η

Sample Complexity Guarantees: Pure-exploration
Non-stochastic Infinite-armed Bandit Problem

Existing Methods 

Hyperband Algorithm
• Experimental Results
• Theory (Briefly)  

Example: LeNet, SGD on MNIST

Solver code taken from http://
deeplearning.net/tutorial/lenet.html

R = 81; B = 5*R; η = 3

http://deeplearning.net/tutorial/lenet.html

How much does s matter?

The best value of s is unknowable a priori, so we try
them all, and do not lose much

Example: LeNet, SGD on MNIST

Setup:
• R=75 epochs over the training set

• Experiments take >2 years in GPU-hours
• Architecture from cuda-convnet (used by

Snoek et al. and Domhan et al.)  

Larger Neural Network Experiments

Architecture from Snoek et al. and
Domhan et al. from cuda-convnet  

Architecture from Snoek et al. and
Domhan et al. from cuda-convnet  
Hyperband exhibits:
• 10x speedup
• Improved final accuracy over purely Bayesian methods
• Lower variance across trials

Hyperband takes 5*R to output anything
• At this point, others have considered 5 configurations,

while Hyperband has considered over 256!

What if my learning algorithm is not iterative?

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

bf

Recall our black-box solver from earlier…

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

bf

Recall our black-box solver from earlier…

bb·

What if my learning algorithm is not iterative?

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

bfbb·

Recall our black-box solver from earlier…

What if my learning algorithm is not iterative?

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

bfbb·

Recall our black-box solver from earlier…

What if my learning algorithm is not iterative?

Hyperband with Data Downsampling

Time (minutes)

Te
st

 e
rr

or

Cifar-10

Multiclass classification via
Kernel LS Regression

k(x, y) =

8
><

>:

exp(��||x� y||2)
(�hx, yi+ r)

d

tanh(�hx, yi+ r)

3 Hyperparameters:

 -

 - regularization constant
 - normalize? (binary)

 Hyperband exhibits:
• 60x speedup over random
• 30x speedup over Bayesian
• improved accuracy 

Existing Methods 

Hyperband Algorithm
• Experimental Results
• Theory (Briefly)  

Extensions

Number of pulls

lo
ss

k

`i,k

What are the relevant quantities?

�k

�k

⌫2

⌫1

lim
k!1

`i,k = ⌫i |`i,k � ⌫i|  �i,k 8i 2 [n], k � 1

(Neither of which known to the algorithm)

Number of pulls

lo
ss

k

`i,k

What are the relevant quantities?

�k

�k

⌫2

⌫1

��1(⌫2�⌫1
2) = min{k : �k  ⌫2�⌫1

2 }

lim
k!1

`i,k = ⌫i |`i,k � ⌫i|  �i,k 8i 2 [n], k � 1

(Neither of which known to the algorithm)

2 log(n)
nX

i=2

��1
(

⌫i�⌫1
2)

Successive Halving Uniform allocation

n max

i=2,...,n
��1

(

⌫i�⌫1
2)

The best arm is identified if the budget is at least

More realistic setting: find a ‘good’ arm
• Assume arms sampled from some unknown distribution
• Can derive similar results comparing SH to Uniform
• Can generalize to Hyperband
• See paper for details…

Difference between sum and n*max can be large!

András György and Levente Kocsis. Efficient multi-start strategies for local search
algorithms. JAIR, 41, 2011.

Non-convex optimization via random-initializations

Hyper-parameter optimization / model selection
Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian

optimization. arXiv:1406.3896, 2014.

Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for
computationally adaptive model selection. COLT, 2012.

Early stopping is not a new idea

Domhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic
 hyperparameter optimization of deep neural networks by extrapolation of
 learning curves. In IJCAI, 2015.

Previous works assume explicit convergence behavior  
Hyperband adapts to it (doesn’t rely on knowledge of !)�k

Immediate Extensions of Hyperband

Hyperband applies to general resources:
• iterations
• dataset subsampling
• feature subsampling: useful when using random

features to approximate kernels
• time: similar to iterations; useful in distributed setting

to kill stragglers
 
Don’t want to set R?

• See paper for ‘infinite horizon’ version of Hyperband

Looks at more configurations to speed up random search
• Particularly useful when # evaluations linear in number

of hyperparameters

Up to 70X faster than random search

General purpose: no assumptions on convergence rates 

Papers with theory and some extensions
• AISTATS16: http://arxiv.org/abs/1502.07943
• More recently on arXiv: http://arxiv.org/abs/1603.06560

Hyperband Summary

