benes_daum¶
- probnum.problems.zoo.filtsmooth.benes_daum(rng, measurement_variance=0.1, process_diffusion=1.0, time_grid=None, initrv=None)[source]¶
Filtering/smoothing setup based on the Beneš SDE.
A non-linear state space model for the dynamics of a Beneš SDE. Here, we formulate a continuous-discrete state space model:
\[\begin{split}d x(t) &= \tanh(x(t)) d t + L d w(t) \\ y_n &= x(t_n) + r_n\end{split}\]for a driving Wiener process \(w(t)\) and Gaussian distributed measurement noise \(r_n \sim \mathcal{N}(0, R)\) with measurement noise covariance matrix \(R\).
- Parameters
rng (Generator) – Random number generator.
measurement_variance (FloatLike) – Marginal measurement variance.
process_diffusion (FloatLike) – Diffusion constant for the dynamics
time_grid (Optional[ndarray]) – Time grid for the filtering/smoothing problem.
initrv (Optional[RandomVariable]) – Initial random variable.
- Returns
regression_problem –
TimeSeriesRegressionProblem
object with time points and noisy observations.info – Dictionary containing additional information like the prior process.
Notes
In order to generate observations for the returned
TimeSeriesRegressionProblem
object, the non-linear Beneš SDE has to be linearized. Here, aContinuousEKFComponent
is used, which corresponds to a first-order linearization as used in the extended Kalman filter.