bayesquad_from_data¶
- probnum.quad.bayesquad_from_data(nodes, fun_evals, kernel=None, domain=None, measure=None)[source]¶
Infer the value of an integral from a given set of nodes and function evaluations.
- Parameters
nodes (ndarray) – shape=(n_eval, input_dim) – Locations at which the function evaluations are available as
fun_evals
.fun_evals (ndarray) – shape=(n_eval,) – Function evaluations at
nodes
.kernel (Optional[Kernel]) – The kernel used for the GP model. Defaults to the
ExpQuad
kernel.domain (Optional[Union[Tuple[Union[float, Real, floating], Union[float, Real, floating]], Tuple[ndarray, ndarray]]]) – The integration domain. Contains lower and upper bound as scalar or
np.ndarray
. Obsolete ifmeasure
is given.measure (Optional[IntegrationMeasure]) – The integration measure. Defaults to the Lebesgue measure.
- Returns
integral – The integral belief subject to the provided measure or domain.
info – Information on the performance of the method.
- Raises
ValueError – If neither a domain nor a measure are given.
- Warns
When ``domain`` is given but not used.
- Return type
See also
bayesquad
Computes the integral using an acquisition policy.
Examples
>>> import numpy as np >>> domain = (0, 1) >>> nodes = np.linspace(0, 1, 15)[:, None] >>> fun_evals = nodes.reshape(-1, ) >>> F, info = bayesquad_from_data(nodes=nodes, fun_evals=fun_evals, domain=domain) >>> print(F.mean) 0.5