probnum.diffeq.rigidbody(timespan, initrv)[source]

Initial value problem (IVP) for rigid body dynamics without external forces

The rigid body dynamics without external forces is defined through

\[\begin{split}f(t, y) = \begin{pmatrix} y_2 y_3 \\ -y_1 y_3 \\ -0.51 \cdot y_1 y_2 \end{pmatrix}\end{split}\]

The ODE system has no parameters. This implementation includes the Jacobian \(J_f\) of \(f\).

  • timespan ((float, float)) – Time span of IVP.

  • initrv (RandomVariable,) – (shape=(3, )) – Vector-valued RandomVariable that describes the belief over the initial value. Usually it is a Constant (noise-free) or Normal (noisy) Random Variable with \(3\)-dimensional mean vector and \(3 \times 3\)-dimensional covariance matrix. To replicate “classical” initial values use the Constant distribution.


IVP object describing the rigid body dynamics IVP with the prescribed configuration.

Return type