Source code for probnum.diffeq.ode.ivp_examples

import numpy as np

from .ivp import IVP


[docs]def logistic(timespan, initrv, params=(3.0, 1.0)): r"""Initial value problem (IVP) based on the logistic ODE. The logistic ODE is defined through .. math:: f(t, y) = a y \left( 1 - \frac{y}{b} \right) for some parameters :math:`(a, b)`. Default is :math:`(a, b)=(3.0, 1.0)`. This implementation includes the Jacobian :math:`J_f` of :math:`f` as well as a closed form solution given by .. math:: f(t) = \frac{b y_0 \exp(a t)}{b + y_0 \left[ \exp(at) - 1 \right]} where :math:`y_0= y(t_0)` is the initial value. Parameters ---------- timespan : (float, float) Time span of IVP. initrv : RandomVariable, *(shape=())* -- Scalar-valued RandomVariable that describes the belief over the initial value. Usually it is a Constant (noise-free or Normal (no Random Variable isy) with scalar mean and scalar variance. To replicate "classical" initial values use the Constant distribution. params : (float, float), optional Parameters :math:`(a, b)` for the logistic IVP. Default is :math:`(a, b) = (3.0, 1.0)`. Returns ------- IVP IVP object describing the logistic IVP with the prescribed configuration. """ def rhs(t, y): return log_rhs(t, y, params) def jac(t, y): return log_jac(t, y, params) def hess(t, y): return log_hess(t, y, params) def sol(t): return log_sol(t, params, initrv.mean) return IVP(timespan, initrv, rhs, jac, hess, sol)
def log_rhs(t, y, params): """RHS for logistic model.""" l0, l1 = params return l0 * y * (1.0 - y / l1) def log_jac(t, y, params): """Jacobian for logistic model.""" l0, l1 = params return np.array([l0 - l0 / l1 * 2 * y]) def log_hess(t, y, params): """Hessian for logistic model.""" l0, l1 = params return np.array([[-2 * l0 / l1]]) def log_sol(t, params, y0): """Solution for logistic model.""" l0, l1 = params nomin = l1 * y0 * np.exp(l0 * t) denom = l1 + y0 * (np.exp(l0 * t) - 1) return nomin / denom
[docs]def fitzhughnagumo(timespan, initrv, params=(0.0, 0.08, 0.07, 1.25)): r"""Initial value problem (IVP) based on the FitzHugh-Nagumo model. The FitzHugh-Nagumo (FHN) model is defined through .. math:: f(t, y) = \begin{pmatrix} y_1 - \frac{1}{3} y_1^3 - y_2 + a \\ \frac{1}{d} (y_1 + b - c y_2) \end{pmatrix} for some parameters :math:`(a, b, c, d)`. Default is :math:`(a, b)=(0.0, 0.08, 0.07, 1.25)`. This implementation includes the Jacobian :math:`J_f` of :math:`f`. Parameters ---------- timespan : (float, float) Time span of IVP. initrv : RandomVariable, *(shape=(2, ))* -- Vector-valued RandomVariable that describes the belief over the initial value. Usually it is a Constant (noise-free) or Normal (noisy) Random Variable with :math:`2`-dimensional mean vector and :math:`2 \times 2`-dimensional covariance matrix. To replicate "classical" initial values use the Constant distribution. params : (float, float, float, float), optional Parameters :math:`(a, b, c, d)` for the FitzHugh-Nagumo IVP. Default is :math:`(a, b, c, d)=(0.0, 0.08, 0.07, 1.25)`. Returns ------- IVP IVP object describing the FitzHugh-Nagumo IVP with the prescribed configuration. """ def rhs(t, y): return fhn_rhs(t, y, params) def jac(t, y): return fhn_jac(t, y, params) return IVP(timespan, initrv, rhs, jac)
def fhn_rhs(t, y, params): """RHS for FitzHugh-Nagumo model.""" y1, y2 = y a, b, c, d = params return np.array([y1 - y1 ** 3.0 / 3.0 - y2 + a, (y1 + b - c * y2) / d]) def fhn_jac(t, y, params): """Jacobian for FitzHugh-Nagumo model.""" y1, y2 = y a, b, c, d = params return np.array([[1.0 - y1 ** 2.0, -1.0], [1.0 / d, -c / d]])
[docs]def lotkavolterra(timespan, initrv, params=(0.5, 0.05, 0.5, 0.05)): r"""Initial value problem (IVP) based on the Lotka-Volterra model. The Lotka-Volterra (LV) model is defined through .. math:: f(t, y) = \begin{pmatrix} a y_1 - by_1y_2 \\ -c y_2 + d y_1 y_2 \end{pmatrix} for some parameters :math:`(a, b, c, d)`. Default is :math:`(a, b)=(0.5, 0.05, 0.5, 0.05)`. This implementation includes the Jacobian :math:`J_f` of :math:`f`. Parameters ---------- timespan : (float, float) Time span of IVP. initrv : RandomVariable, *(shape=(2, ))* -- Vector-valued RandomVariable that describes the belief over the initial value. Usually it is a Constant (noise-free) or Normal (noisy) Random Variable with :math:`2`-dimensional mean vector and :math:`2 \times 2`-dimensional covariance matrix. To replicate "classical" initial values use the Constant distribution. params : (float, float, float, float), optional Parameters :math:`(a, b, c, d)` for the Lotka-Volterra IVP. Default is :math:`(a, b, c, d)=(0.5, 0.05, 0.5, 0.05)`. Returns ------- IVP IVP object describing the Lotka-Volterra IVP with the prescribed configuration. """ def rhs(t, y): return lv_rhs(t, y, params) def jac(t, y): return lv_jac(t, y, params) return IVP(timespan, initrv, rhs, jac)
def lv_rhs(t, y, params): """RHS for Lotka-Volterra.""" a, b, c, d = params y1, y2 = y return np.array([a * y1 - b * y1 * y2, -c * y2 + d * y1 * y2]) def lv_jac(t, y, params): """Jacobian for Lotka-Volterra.""" a, b, c, d = params y1, y2 = y return np.array([[a - b * y2, -b * y1], [d * y2, -c + d * y1]])
[docs]def seir(timespan, initrv, params=(0.3, 0.3, 0.1)): r"""Initial value problem (IVP) based on the SEIR model. The SEIR model with no vital dynamics is defined through .. math:: f(t, y) = \begin{pmatrix} \frac{-\beta y_1 y_3}{N} \\ \frac{\beta y_1 y_3}{N} - \alpha y_2 \\ \alpha y_2 - \gamma y_3 \\ \gamma y_3 \end{pmatrix} for some parameters :math:`(\alpha, \beta, \gamma)` and population count :math:`N`. Without taking vital dynamics into consideration, :math:`N` is constant such that for every time point :math:`t` .. math:: S(t) + E(t) + I(t) + R(t) = N holds. Default parameters are :math:`(\alpha, \beta, \gamma)=(0.3, 0.3, 0.1)`. The population count is computed from the (mean of the) initial value random variable. This implementation includes the Jacobian :math:`J_f` of :math:`f`. Parameters ---------- timespan : (float, float) Time span of IVP. initrv : RandomVariable, *(shape=(4, ))* -- Vector-valued RandomVariable that describes the belief over the initial value. Usually it is a Constant (noise-free) or Normal (noisy) Random Variable with :math:`4`-dimensional mean vector and :math:`4 \times 4`-dimensional covariance matrix. To replicate "classical" initial values use the Constant distribution. params : (float, float, float), optional Parameters :math:`(\alpha, \beta, \gamma)` for the SEIR model IVP. Default is :math:`(\alpha, \beta, \gamma)=(0.3, 0.3, 0.1)`. Returns ------- IVP IVP object describing the SEIR model IVP with the prescribed configuration. """ population_count = np.sum(initrv.mean) params_and_population_count = (*params, population_count) def rhs(t, y): return seir_rhs(t, y, params_and_population_count) def jac(t, y): return seir_jac(t, y, params_and_population_count) return IVP(timespan, initrv, rhs, jac=jac)
def seir_rhs(t, y, params): """RHS for SEIR model.""" alpha, beta, gamma, population_count = params y1, y2, y3, y4 = y y1_next = -beta * y1 * y3 / population_count y2_next = beta * y1 * y3 / population_count - alpha * y2 y3_next = alpha * y2 - gamma * y3 y4_next = gamma * y3 return np.array([y1_next, y2_next, y3_next, y4_next]) def seir_jac(t, y, params): """Jacobian for SEIR model.""" alpha, beta, gamma, population_count = params y1, y2, y3, y4 = y d_dy1 = np.array( [-beta * y3 / population_count, 0.0, -beta * y1 / population_count, 0.0] ) d_dy2 = np.array( [beta * y3 / population_count, -alpha, beta * y1 / population_count, 0.0] ) d_dy3 = np.array([0.0, alpha, -gamma, 0.0]) d_dy4 = np.array([0.0, 0.0, gamma, 0.0]) jac_matrix = np.array([d_dy1, d_dy2, d_dy3, d_dy4]) return jac_matrix
[docs]def lorenz(timespan, initrv, params=(10.0, 28.0, 8.0 / 3.0)): r"""Initial value problem (IVP) based on the Lorenz system. The Lorenz system is defined through .. math:: f(t, y) = \begin{pmatrix} a(y_2 - y_1) \\ y_1(b-y_3) - y_2 \\ y_1y_2 - cy_3 \end{pmatrix} for some parameters :math:`(a, b, c)`. Default is :math:`(a, b, c)=(10, 28, 2.667)`. This implementation includes the Jacobian :math:`J_f` of :math:`f`. Parameters ---------- timespan : (float, float) Time span of IVP. initrv : RandomVariable, *(shape=(3, ))* -- Vector-valued RandomVariable that describes the belief over the initial value. Usually it is a Constant (noise-free) or Normal (noisy) Random Variable with :math:`3`-dimensional mean vector and :math:`3 \times 3`-dimensional covariance matrix. To replicate "classical" initial values use the Constant distribution. params : (float, float, float, float), optional Parameters :math:`(a, b, c)` for the Lorenz system. Default is :math:`(a, b, c)=(10, 28, 2.667)`. Returns ------- IVP IVP object describing the Lorenz system IVP with the prescribed configuration. """ def rhs(t, y): return lor_rhs(t, y, params) def jac(t, y): return lor_jac(t, y, params) return IVP(timespan, initrv, rhs, jac)
def lor_rhs(t, y, params): """RHS for Lorenz system.""" a, b, c = params y1, y2, y3 = y return np.array([a * (y2 - y1), y1 * (b - y3) - y2, y1 * y2 - c * y3]) def lor_jac(t, y, params): """Jacobian for Lorenz system.""" a, b, c = params y1, y2, y3 = y return np.array([[-a, a, 0], [b - y3, -1, -y1], [y2, y1, -c]])