Source code for probnum.filtsmooth.gaussfiltsmooth.kalman

"""Gaussian filtering and smoothing."""


from typing import Optional

import numpy as np

from probnum import problems
from probnum.filtsmooth.gaussfiltsmooth import stoppingcriterion

from ..bayesfiltsmooth import BayesFiltSmooth
from ..timeseriesposterior import TimeSeriesPosterior
from .kalmanposterior import FilteringPosterior, SmoothingPosterior
from .stoppingcriterion import StoppingCriterion


[docs]class Kalman(BayesFiltSmooth): """Gaussian filtering and smoothing, i.e. Kalman-like filters and smoothers. Parameters ---------- dynamics_model Prior dynamics. Usually an LTISDE object or an Integrator, but LinearSDE, ContinuousEKFComponent, or ContinuousUKFComponent are also valid. Describes a random process in :math:`K` dimensions. If an integrator, `K=spatialdim(ordint+1)` for some spatialdim and ordint. measurement_model Measurement model. Usually an DiscreteLTIGaussian, but any DiscreteLinearGaussian is acceptable. This model maps the `K` dimensional prior state (see above) to the `L` dimensional space in which the observation ''live''. For 2-dimensional observations, `L=2`. If an DiscreteLTIGaussian, the measurement matrix is :math:`L \\times K` dimensional, the forcevec is `L` dimensional and the meascov is `L \\times L` dimensional. initrv Initial random variable for the prior. This is a `K` dimensional Gaussian distribution (not `L`, because it belongs to the prior) """
[docs] def iterated_filtsmooth( self, regression_problem: problems.RegressionProblem, init_posterior: Optional[SmoothingPosterior] = None, stopcrit: Optional[stoppingcriterion.StoppingCriterion] = None, ): """Compute an iterated smoothing estimate with repeated posterior linearisation. If the extended Kalman filter is used, this yields the IEKS. In any case, the result is an approximation to the maximum-a- posteriori estimate. Parameters ---------- regression_problem init_posterior Initial posterior to linearize at. If not specified, linearizes at the prediction random variable. stopcrit: StoppingCriterion A stopping criterion for iterated filtering. Returns ------- SmoothingPosterior See Also -------- RegressionProblem: a regression problem data class """ smoothing_post = init_posterior info_dicts = None for smoothing_post, info_dicts in self.iterated_filtsmooth_posterior_generator( regression_problem, smoothing_post, stopcrit ): pass return smoothing_post, info_dicts
[docs] def iterated_filtsmooth_posterior_generator( self, regression_problem: problems.RegressionProblem, init_posterior: Optional[SmoothingPosterior] = None, stopcrit: Optional[stoppingcriterion.StoppingCriterion] = None, ): """Compute iterated smoothing estimates with repeated posterior linearisation. If the extended Kalman filter is used, this yields the IEKS. In any case, the result is an approximation to the maximum-a- posteriori estimate. Parameters ---------- regression_problem init_posterior Initial posterior to linearize at. Defaults to computing a (non-iterated) smoothing posterior, which amounts to linearizing at the prediction random variable. stopcrit: StoppingCriterion A stopping criterion for iterated filtering. Yields ------ SmoothingPosterior info_dicts list of dictionaries containing filtering information See Also -------- RegressionProblem: a regression problem data class """ if stopcrit is None: stopcrit = StoppingCriterion() if init_posterior is None: # Initialise iterated smoother new_posterior, info_dicts = self.filtsmooth( regression_problem, _previous_posterior=None, ) else: new_posterior = init_posterior info_dicts = [] yield new_posterior, info_dicts new_mean = new_posterior.states.mean old_mean = np.inf * np.ones(new_mean.shape) while not stopcrit.terminate(error=new_mean - old_mean, reference=new_mean): old_posterior = new_posterior new_posterior, info_dicts = self.filtsmooth( regression_problem, _previous_posterior=old_posterior, ) yield new_posterior, info_dicts new_mean = new_posterior.states.mean old_mean = old_posterior.states.mean
[docs] def filtsmooth( self, regression_problem: problems.RegressionProblem, _previous_posterior: Optional[TimeSeriesPosterior] = None, ): """Apply Gaussian filtering and smoothing to a data set. Parameters ---------- regression_problem _previous_posterior: KalmanPosterior If specified, approximate Gaussian filtering and smoothing linearises at this, prescribed posterior. This is used for iterated filtering and smoothing. For standard filtering, this can be ignored. Returns ------- KalmanPosterior Posterior distribution of the filtered output info_dicts list of dictionaries containing filtering information See Also -------- RegressionProblem: a regression problem data class """ filter_result = self.filter( regression_problem, _previous_posterior=_previous_posterior, ) filter_posterior, info_dicts = filter_result smooth_posterior = self.smooth(filter_posterior) return smooth_posterior, info_dicts
[docs] def filter( self, regression_problem: problems.RegressionProblem, _previous_posterior: Optional[TimeSeriesPosterior] = None, ): """Apply Gaussian filtering (no smoothing!) to a data set. Parameters ---------- regression_problem _previous_posterior: KalmanPosterior If specified, approximate Gaussian filtering and smoothing linearises at this, prescribed posterior. This is used for iterated filtering and smoothing. For standard filtering, this can be ignored. Returns ------- KalmanPosterior Posterior distribution of the filtered output info_dicts list of dictionaries containing filtering information See Also -------- RegressionProblem: a regression problem data class """ filtered_rvs = [] info_dicts = [] for rv, info in self.filtered_states_generator( regression_problem, _previous_posterior ): filtered_rvs.append(rv) info_dicts.append(info) posterior = FilteringPosterior( locations=regression_problem.locations, states=filtered_rvs, transition=self.dynamics_model, ) return posterior, info_dicts
[docs] def filtered_states_generator( self, regression_problem: problems.RegressionProblem, _previous_posterior: Optional[TimeSeriesPosterior] = None, ): """Apply Gaussian filtering (no smoothing!) to a data set. Parameters ---------- regression_problem _previous_posterior: KalmanPosterior If specified, approximate Gaussian filtering and smoothing linearises at this, prescribed posterior. This is used for iterated filtering and smoothing. For standard filtering, this can be ignored. Yields ------ filtrv Random variable returned from prediction and update of the Kalman filter. info_dict Dictionary containing filtering information See Also -------- RegressionProblem: a regression problem data class """ dataset, times = regression_problem.observations, regression_problem.locations _linearise_update_at = ( None if _previous_posterior is None else _previous_posterior(times[0]) ) info_dict = {"pred_rv": self.initrv, "info_pred": {}} filtrv, info_dict["info_upd"] = self.update( data=dataset[0], rv=self.initrv, time=times[0], _linearise_at=_linearise_update_at, ) yield filtrv, info_dict for idx in range(1, len(times)): _linearise_predict_at = ( None if _previous_posterior is None else _previous_posterior(times[idx - 1]) ) _linearise_update_at = ( None if _previous_posterior is None else _previous_posterior(times[idx]) ) filtrv, info_dict = self.filter_step( start=times[idx - 1], stop=times[idx], current_rv=filtrv, data=dataset[idx], _linearise_predict_at=_linearise_predict_at, _linearise_update_at=_linearise_update_at, ) yield filtrv, info_dict
[docs] def filter_step( self, start, stop, current_rv, data, _linearise_predict_at=None, _linearise_update_at=None, _diffusion=1.0, ): """A single filter step. Consists of a prediction step (t -> t+1) and an update step (at t+1). Parameters ---------- start : float Predict FROM this time point. stop : float Predict TO this time point. current_rv : RandomVariable Predict based on this random variable. For instance, this can be the result of a previous call to filter_step. data : array_like Compute the update based on this data. _linearise_predict_at Linearise the prediction step at this RV. Used for iterated filtering and smoothing. _linearise_update_at Linearise the update step at this RV. Used for iterated filtering and smoothing. _diffusion Custom diffusion for the underlying Wiener process. Used in calibration. Returns ------- RandomVariable Resulting filter estimate after the single step. dict Additional information provided by predict() and update(). Contains keys `pred_rv`, `info_pred`, `meas_rv`, `info_upd`. """ data = np.asarray(data) info = {} info["pred_rv"], info["info_pred"] = self.predict( rv=current_rv, start=start, stop=stop, _linearise_at=_linearise_predict_at, _diffusion=_diffusion, ) filtrv, info["info_upd"] = self.update( rv=info["pred_rv"], time=stop, data=data, _linearise_at=_linearise_update_at, ) return filtrv, info
[docs] def predict(self, rv, start, stop, _linearise_at=None, _diffusion=1.0): return self.dynamics_model.forward_rv( rv, t=start, dt=stop - start, _linearise_at=_linearise_at, _diffusion=_diffusion, )
# Only here for compatibility reasons, not actually used in filter().
[docs] def measure(self, rv, time, _linearise_at=None): return self.measurement_model.forward_rv( rv, t=time, _linearise_at=_linearise_at, )
[docs] def update(self, rv, time, data, _linearise_at=None): return self.measurement_model.backward_realization( data, rv, t=time, _linearise_at=_linearise_at )
[docs] def smooth(self, filter_posterior, _previous_posterior=None): """Apply Gaussian smoothing to the filtering outcome (i.e. a KalmanPosterior). Parameters ---------- filter_posterior : KalmanPosterior Posterior distribution obtained after filtering Returns ------- KalmanPosterior Posterior distribution of the smoothed output """ rv_list = self.dynamics_model.smooth_list( filter_posterior.states, filter_posterior.locations ) return SmoothingPosterior( filter_posterior.locations, rv_list, self.dynamics_model, filtering_posterior=filter_posterior, )