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Abstract

In this paper we propose a novel approach to automatically determine the batch
size in stochastic gradient descent methods. The choice of the batch size induces
a trade-off between the accuracy of the gradient estimate and the cost in terms of
samples of each update. We propose to determine the batch size by optimizing
the ratio between a lower bound to the first-order Taylor approximation of the
expected improvement and the number of samples used to estimate the gradient.
The performance of the proposed approach is empirically compared with related
methods on an image classification problem using the popular MINST dataset.

1 Introduction

The optimization of the expectation of a function is a relevant problem in large-scale machine learning
and in many stochastic optimization problems involving finance, signal processing, neural networks,
just to mention a few. The availability of large datasets has called the attention on algorithms
that scale favorably both with the number of trainable parameters and the size of the input data.
Batch approaches that exploit large samples to compute an approximation of the gradient have been
gradually replaced by stochastic approaches that sample a small dataset (usually a single point) per
iteration. For example, stochastic gradient descent (SGD) methods have been observed to yield faster
convergence and (sometimes) less test errors than standard batch methods [1].

In practice, SGD requires several steps of manual adjustment of the parameters to obtain good
performance. For example, the initial step size as well as the design of appropriate annealing schema
is required for learning with stationary data [2, 3]. In addition, to limit the effects of noisy updates, it
is often necessary to exploit mini-batch techniques that require the choice of an additional parameter.
These problems are enhanced when nonstationary settings are considered [3].

Several techniques have been designed for the tuning of the step size with pure SGD method [4, 5, 6, 7].
Although these approaches have been successful applied to mini-batch settings, the design of the
appropriate batch size is still largely unexplored. A notable exception is the work presented in [8]
where the authors proposed to adapt the batch size, that is the number of samples per gradient update.
The batch size is selected according to the variance of the gradient estimated from observed samples.
Starting from the geometrical definition of descent direction, through several manipulations, the
authors derived the following condition:

|S| ≥
‖Var [∇θ]‖1
γ2
∥∥∇Sθ∥∥22 , (1)

where γ ∈ (0, 1) and Var [∇θ] is the vector storing the population variance for each component
(Var [∇θ] = [σ2

1 , . . . , σ
2
d]

T). The population variance is then approximated through its unbiased
estimate Var

[
∇Sθ
]

computed on sample set S.

The contribute of this paper is the derivation of a novel algorithm for the selection of the batch size
in order to compromise between noisy updates and more certain but expensive steps. The proposed
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algorithm automatically adapts the batch size at each iteration in order to maximize a lower bound to
the expected improvement by accounting for the cost of processing samples. The only parameter to
be handled is the probability δ that regulates the confidence level of the improvement step.

2 Cost Sensitive Scenario

In this section we formalize the problem and the methodology that will be used in this paper. Consider
the problem of maximizing the expected value of a function f

max
θ
J (θ) = max

θ
E
x∼P

[f(x,θ)] ,

where θ ∈ Rd is the trainable parameter vector and the samples x are drawn i.i.d. from a distribution
P . A common approach is to optimize previous function through gradient ascent. However, since
P is unknown it is not possible to compute the exact gradient∇θJ but we can estimate it through
samples. Given a training set S = {xi|xi ∼ P, i = 1, . . . , N}, the mini-batch stochastic gradient
(SG) ascent is a stochastic process

θ(t+1) = θ(t) + ∆θn = θ(t) + η (t)∇θJ n, t ∈ N+ (2)

where ∆θn is random variable associated to an n-dimensional subset of S (e.g., randomly drawn).
Formally ∆θn is defined as the product of a positive scalar (or positive semi-definite matrix) η (t)
and a the gradient estimate built on a n samples drawn from S

∇θJ n =
1

n

∑
i∈In
∇θf(xi,θ),

where In is a index set used to identify elements in S. ∇θJ n is a random variable that depends on
the selection of the subset of S, i.e., the index set In. In the following we will show how to select the
batch size n for each gradient update.

To evaluate the quality of an update we consider the improvement ∆J n = J (θ + ∆θn)− J (θ)
that is again a random variable. As the number of samples n increases, the gradient estimate (and
consequently the estimated improvement) gets more and more certain. So, we can consider as a goal
the maximization of some statistical lower bound Υn to the expected improvement ∆J . On the other
hand, this problem is trivially solved by taking the batch size as large as possible, thus not considering
the additional computational cost of processing a larger batch size. In practice, this means that the
batch size n induces a trade-off between a secure but costly update (the estimate converges to the true
value as n → +∞) and a noisy one. In order to formalize the trade-off, in this paper we consider
that any additional sample comes at a price and when the addition of a new sample does not provide
any significant improvement in the estimated performance it is not worth to pay that price. As a
consequence, we can formalize the batch size selection problem as a cost sensitive optimization:

n∗ = arg max
n∈N+

Υn

n
. (3)

3 Lower Bound to the Improvement

This section focuses on the derivation of the lower bound to the improvement ∆J n. Given an
increment ∆θn, a realization of the random variable ∆J n can be computed. However, we do not
know the analytical relationship that ties the two terms. The lack of this information forbids a
methodological approach to the problem. For example, we cannot exploit informed methods for the
optimization of ∆J n w.r.t. ∆θn, but we can only resort to black-box methods (e.g., grid search).

This relationship can be made explicit by exploiting a Taylor’s expansion of the improvement. For
example, the first order expansion is given by

∆J n = ∇θJ T∆θn +R1 (∆θn) , (4)

where R1 (∆θn) is the remainder. A lower bound to the remainder is easily derived by minimizing
the remainder along the line connecting the current parameterization θ and the value θ + ∆θ:
R1(∆θ) ≥ 1

2 infc∈(0,1)
(
∆θTHθJ (θ + c∆θ) ∆θ

)
. By plugging in this result in (4), a deterministic

lower bound to the improvement is derived.

2



Hoeffding Chebyshev Bernstein

n ≥ 18L2

‖∇θJn‖22
ln
(
d+1
δ

)
n ≥ 9‖Var[∇θJ ]‖1

4δ‖∇θJn‖22
n ≥ 9b+16a‖∇θJn‖2+3

√
9b2+32ab‖∇θJn‖2

8‖∇θJn‖22

Table 1: Batch sizes obtained by solving Problem (3) using different concentration inequalities. In
the Bernstein case a and b are: a = 2

3L ln
(
d+1
δ

)
and b = 2 ‖Var[∇θJ ]‖2 ln

(
d+1
δ

)
.

The computation of the presented lower bound requires the evaluation of the Hessian in several
points (depending on c) which has a quadratic cost in the number of parameters d. The formal way
to deal with this issue is to require a high order Lipschitz continuous condition on the objective
function in order to derive a bound to the Hessian or to exploit the knowledge of the objective
function [9]. However, in practice this information is hard to retrieve and since our goal is to derive a
practical algorithm, we suggest to consider the first-order Taylor approximation of the improvement
∆J n ≈ ∇θJ T∆θn, by dropping the remainder. By adopting a risk-averse perspective, in the next
section we describe how to to derive different lower bounds to such approximation of the expect
improvement and the correspondent optimal batch sizes obtained by maximizing the ratio between
the lower bounds and the number of samples used to estimate the gradient.

4 Linear Probabilistic Adaptive Sample Technique (L-PAST)

Let ∆̂J n = ∇θJ T∆θn be the linear simplification of the expect improvement. We need to
manipulate such formulation in order to remove the dependence on the true gradient. This goal can be
achieved by exploiting concentration inequalities on the exact gradient∇θJ . Formally, we consider
that the following inequality holds with probability (w.p.) 1− δ

‖∇θJ −∇θJ n‖2 ≤ B
n
δ . (5)

Given the previous inequality it is easy to prove the following bound, w.p. 1− δ

∆̂J n = ∇θJ T∆θn = η∇θJ T∇θJ n ≥ η
(
‖∇θJ n‖2 −B

n
‖∇‖

)
‖∇θJ n‖2 = Υn, (6)

where we have considered the global step size (η ∈ R+). The lower bound to the expected improve-
ment depends on the batch dimension through the concentration bound (‖∇θJ n‖2 is a realization
of the random variable fixed given the current set In). In particular, as the number of samples
increases, the empirical error (concentration inequality) decreases leading to better estimates of the
improvement. Having derived a sample-based bound to the expected improvement, we can solve the
cost-sensitive problem (3) for the “optimal” batch dimension n. L-PAST is outlined in Algorithm 1.

4.1 Concentration Inequalities and Batch Dimension

Algorithm 1 L-PAST
Inputs: initial batch size n, sample set S
for t=1 to T do
In ← {i|i ∈ 1, . . . , N ∧ |In| = n}
∇θJ n ← 1

n

∑
i∈In ∇θf

(
xi,θ

(t)
)

θ(t+1) ← θ(t)+η∇θJ n (η through any tech-
nique)
n← arg maxn∈N+

Υn

n
end for

The bound in (6) provides a generic lower bound
to the expected improvement that is independent
from the concentration inequality used. It is now
necessary to provide an explicit formulation in
order to solve Problem (3). Several concentra-
tion inequalities have been provided in literature,
in this paper we consider Hoeffding’s, Cheby-
shev’s and Bernstein’s inequalities. Chebyshev’s
inequality has been widely exploited in litera-
ture due to its simplicity, it can be applied to any
arbitrary distribution (by knowing the variance).
On the other side, Hoeffding’s and Bernstein’s inequalities require a bounded support of the distribu-
tion, i.e., the knowledge of the range of the random variables (here ∇θf(xi,θ)). We use the term
distribution aware to refer to the scenario where the properties of the distribution are known (e.g.,
variance and range). Although these values can be estimated online from the observed value, the
results may be unreliable in the event of poor estimates. Empirical version—that directly account for
the estimation error—have been presented in literature [10, 11, 12].

The advantage of using these inequalities is that the batch size can be easily computed in closed form,
see Table 1 for the distribution aware scenario. It is worth to notice that all the proposed approaches
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Figure 1: Left figure shows the accuracy on the test set as a function of the total number of samples
processed. Right figure draws the total samples w.r.t. the number of iterations. (δ = 0.1)

δ DSG H. L-PAST C. L-PAST B. L-PAST
0.10 84.93% (13) 89.69% (37) 83.37% (16) 96.55% (791)
0.25 87.31% (25) 89.86% (36) 88.33% (27) 96.64% (850)
0.50 90.28% (42) 89.25% (43) 91.69% (44) 96.63% (902)

Table 2: Accuracy and number of iterations with different confidence levels. SG-256, SG-512 and
SG-1024 obtained 96.20% (705), 95.45% (354) and 94.92% (177), respectively.

retains one hyper-parameter δ ∈ (0, 1) which denotes the desired confidence level. This parameter
can be easily set due to its clear meaning and typically its contribute is small since it is logarithmic.

When we consider the Chebyshev’s inequality, i.e., Bnδ =

√
‖Var[∇θJ ]‖1

nδ , our approach provides a
probabilistic interpretation of the AGSS algorithm presented in [8] and reported in (1). Nevertheless,
our derivation gives a different and more formal interpretation of their approach and gives an explicit
meaning to the hyper-parameter by mapping 4δ

9 to γ2. It is worth to notice that this result is obtained
by considering the distribution aware Chebyshev’s inequality instead of the empirical version. By
replacing the variance with its estimate the result may be unreliable.

5 Experiments and Conclusions

We choose to test the algorithms on the well known MNIST digit recognition task [13] (with 60k
training samples and 10k test samples). The multi-class classifier is a deep, fully connected multi-
layer perceptron with two hidden layers ([784, 256, 128, 10]) with activation function RELU. It has
non-convex loss (cross-entropy) relative to parameters. We tested SG (with batch size of 256, 512
and 1024), DSG [8] and L-PAST with step size selected using RMSprop [14] on 3 epochs. The
n-dimensional subset of S is sampled sequentially without shuffling at the beginning of each epoch.

Figure 1 (left) shows that Bernstein L-PAST is able to achieve the best accuracy on the test set. It
is possible to observe (right figure) that it selects small batches (in the order of 20-50 samples) in
the first iterations when the solution is far from the optimal one, and it increases the batch size when
approaching nearly optimal solutions. Other approaches (DSG, Hoeffding/Chebyshev L-PAST) that
exploit more general inequalities are prone to select bigger batch sizes that result in less updates and
slower convergence rates.

Finally, we tested also different confidence levels. Table 2 shows that, as expected, the confidence δ
has a small influence on the overall behavior. It is worth to notice that smaller batches generally lead
to better (maybe noisy) performance since are able to perform a larger number of updates.

Pure SG has proved to be effective in several applications, but it is highly time consuming since it
exploits one sample for each update. We have shown that it is possible to exploit automatic techniques
that are able to adapt the batch size overtime. Moreover, these techniques can be used in conjunction
to any schema for the update of the parameters. The L-PAST based on Bernstein’s inequality has
proved to be effective on the well known MNIST task. Although the batch size may not play a
fundamental role in supervised applications, it is a critical parameters in reinforcement learning
specially when the environment is highly stochastic (update the estimate with one sample may be too
optimistic). Future work will apply the proposed techniques to refine policy gradient approaches.
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