logistic_ode

probnum.problems.zoo.filtsmooth.logistic_ode(y0=None, timespan=(0.0, 2.0), step=0.1, params=(6.0, 1.0), initrv=None, evlvar=None, ek0_or_ek1=1, order=3, forward_implementation='classic', backward_implementation='classic')[source]

Filtering/smoothing setup for a probabilistic ODE solver for the logistic ODE.

This state space model assumes an integrated Brownian motion prior on the dynamics and constructs the ODE likelihood based on the vector field defining the logistic ODE.

Parameters
  • y0 (Union[Real, ndarray, None]) – Initial conditions of the Initial Value Problem

  • timespan (Tuple[Real, Real]) – Time span of the problem

  • params (Tuple[Real, Real]) – Parameters for the logistic ODE

  • initrv (Optional[RandomVariable]) – Initial random variable of the probabilistic ODE solver

  • evlvar (Union[Real, ndarray, None]) – See probnum.diffeq.GaussianIVPFilter

  • ek0_or_ek1 (Integral) – See probnum.diffeq.GaussianIVPFilter

  • order (Integral) – Order of integration for the Integrated Brownian Motion prior of the solver.

  • forward_implementation (str) – Implementation of the forward transitions inside prior and measurement model. Optional. Default is classic. For improved numerical stability, use sqrt.

  • backward_implementation (str) – Implementation of the backward transitions inside prior and measurement model. Optional. Default is classic. For improved numerical stability, use sqrt.

Returns

  • regression_problemTimeSeriesRegressionProblem object with time points and zero-observations.

  • info – Dictionary containing additional information like the prior process.