TimeSeriesRegressionProblem¶
- class probnum.problems.TimeSeriesRegressionProblem(locations, observations, measurement_models, solution=None)¶
Bases:
object
Time series regression problem.
Fit a stochastic process to data, given a likelihood (realised by a
NonlinearGaussian
transition). Solved by filters and smoothers inprobnum.filtsmooth
.- Parameters
observations (Union[Sequence, np.ndarray]) – Observations of the latent process.
locations (Union[Sequence, np.ndarray]) – Grid-points on which the observations were taken.
measurement_models (Union[Sequence, np.ndarray]) – Measurement models.
solution (Optional[Union[Sequence, np.ndarray]]) – Array containing solution to the problem at
locations
. Used for testing and benchmarking.
- Return type
None
Examples
>>> import numpy as np >>> from probnum import randprocs, randvars >>> obs = [11.4123, -15.5123] >>> loc = [0.1, 0.2] >>> transition_matrix = np.eye(1) >>> noise = randvars.Normal(mean=np.ones((1,)), cov=np.eye(1)) >>> model = randprocs.markov.discrete.LTIGaussian( ... transition_matrix=transition_matrix, noise=noise ... ) >>> measurement_models = [model, model] >>> rp = TimeSeriesRegressionProblem( ... observations=obs, locations=loc, ... measurement_models=measurement_models, ... ) >>> rp TimeSeriesRegressionProblem(locations=[0.1, 0.2], observations=[11.4123, -15.5123], measurement_models=[LTIGaussian(input_dim=1, output_dim=1), LTIGaussian(input_dim=1, output_dim=1)], solution=None) >>> rp.observations [11.4123, -15.5123]
Regression problems are also indexable.
>>> len(rp) 2 >>> rp[0] (0.1, 11.4123, LTIGaussian(input_dim=1, output_dim=1))
Attributes Summary
Attributes Documentation
- solution: Optional[Union[Sequence, np.ndarray]] = None¶